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Summary

Solar promineces are plasma structures that can raise up to 100 Mm above the solar surface.
Prominences are about 100-fold denser and cooler than the surrounding solar corona and
they are seen as bright cloud-like structures beyond the solar limb or as dark filamentous
bodies laying on the solar disk. To be suspended in the tenuous corona, prominences are
supported against the gravity force mainly by magnetic fields. Over the years, these spectac-
ular structures have awaken the curiosity of many observers and theorists who carried out a
tremendous progress in understanding the highly dynamic nature of prominences. However,
several outstanding issues still require an answer.

In this Thesis we focus our attention on the study of oscillations in solar prominences and
on the investigation of their gravitational stability. For example, a full understanding of the
mechanisms that drive the oscillations and their attenuation has not been reached yet. In
this Thesis we propose a completely new analysis in the stability of dense plasma based on
the balance between pressure gradients and gravity force.

By means of numerical simulations we carried out a study of vertical, transverse and longi-
tudinal oscillations by solving the ideal magnetohydrodynamic (MHD) equations for a wide
range of parameters. We studied the periodicity and attenuation of the induced oscillations
for a curtain-shaped model of a prominence permeated by an unsheared magnetic arcade
with dips. It is shown that longitudinal oscillations can be fit with the pendulum model,
whose restoring force is the field-aligned component of gravity, but other mechanisms such
as pressure gradients may contribute to the movement. On the other hand, transverse os-
cillations are mostly subject to magnetic forces. The attenuation of transverse oscillations
was investigated by analysing the velocity distribution and computing the Alfvén continuum
modes. We conclude that resonant absorption is the main cause. Damping of longitudinal
oscillations is due to some kind of shear numerical viscosity.

We extended the simulations of our initial prominence model by including a strong shear
in the magnetic arcade. The redistribution of the magnetic dips due to shear makes the
prominence unstable to displacements along the magnetic field lines. We investigated other
types of magnetic structures but we found that might be unstable. For this reason, we
decided to investigate the gravitational instability of prominences using a basic model.

We analysed the stability of individual plasma threads in a very simple configuration. First,
we considered a circular magnetic flux tube where no magnetic dips exist and only gas pres-
sure gradient provides the restoring force against gravity. We derived analytical expressions
for the different feasible equilibria and the corresponding frequencies of oscillation. It is
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found that prominences may have diverse stable or unstable equilibrium states subject to
the initial position of the thread, its density contrast and length, and the total length of
the magnetic field lines. The transition between the two types of solutions is produced at
specific bifurcation points that have been determined analytically in some particular cases.

Finally, the effect of magnetic dips at the curved magnetic structure is incorporated into
the analytical expressions. In a well formed prominence where the cold plasma is hosted by
the magnetic dip, the system develops a stable solution at the bottom of the dip plus two
pairs of stable/unstable fixed points at the lateral edges of the tube. In this sense, two qual-
itative different stable states coexist, namely the central solution, stable to relatively small
perturbations, and the most external lateral fixed points. On the other hand, prominences
initially located around short and shallow dips develop a central unstable equilibrium point
that makes the prominence to fall down when it is laterally displaced.

6



Resum

Les protuberàncies solars són estructures de plasma que s’enlairen fins a uns 100 Mm sobre
la superf́ıcie del Sol. Les protuberàncies són 100 vegades més denses i fredes que la corona
solar que les envolta i s’observen sobre el limbe com a estructures brillants en forma de núvol
o sobre el disc solar com a cossos obscurs filamentosos. Per mantenir-se suspeses a la tènue
corona, les protuberàncies se sostenen sobretot pels camps magnètics que contraresten la
força de la gravetat. Al llarg dels anys, aquestes espectaculars estructures han despertat
la curiositat de molts observadors i teòrics que han portat a terme un enorme avanç en
la comprensió de la natura altament dinàmica de les protuberàncies. Emperò, diverses
qüestions segueixen pendents de resposta.

En aquesta Tesi centram la nostra atenció en l’estudi de les oscil·lacions en protuberàncies
solars i en la investigació de la seva estabilitat gravitatòria. Per exemple, encara no s’ha
arribat a una comprensió completa dels mecanismes que impulsen les oscil·lacions i la seva
atenuació. En aquesta tesi suggerim una anàlisi completament nova de l’estabilitat dels
plasmes densos basada en el balanç entre els gradients de pressió i la força de la gravetat.

Mitjançant simulacions numèriques realitzam un estudi d’oscil·lacions verticals, transversals
i longitudinals resolent les equacions ideals de la magnetohidrodinàmica (MHD) per un ampli
rang de paràmetres. Estudiam la periodicitat i l’atenuació de les oscil·lacions indüıdes per un
model de protuberància en forma de cortina en un camp magnètic en forma d’arcada sense
cisalla i amb depressió magnètica. Es mostra que les oscil·lacions longitudinals s’ajusten al
model de pèndol, la força restauradora del qual és la força de la gravetat projectada sobre
la ĺınia de camp, maldament altres mecanismes com per exemple gradients de pressió poden
contribuir en el moviment. D’altra banda, les oscil·lacions transversals estan sotmeses prin-
cipalment a forces magnètiques. L’esmortëıment de les oscil·lacions transversal s’investiga
per mitjà de l’anàlisi de la distribució de velocitats i del càlcul dels modes continus d’Alfvén.
S’arriba a la conclusió de què l’absorció ressonant és la principal causa. L’esmortëıment de
les oscil·lacions longitudinals es deu a algun tipus de viscositat numèrica per cisalla.

Les simulacions per al nostre model de protuberància s’estén amb la incorporació d’una forta
cisalla a l’arcada magnètica. La redistribució de les depressions magnètiques deguda a la
cisalla fa que la protuberància sigui inestable a desplaçaments al llarg de les ĺınies de camp
magnètic. Investigàrem altres tipus d’estructures magnètiques, però trobàrem que podien
esser inestables. Per aquest motiu, es va decidir investigar la inestabilitat gravitatòria de les
protuberàncies per un model senzill.

Analitzam la inestabilitat per a fils individuals de plasma en una configuració molt simpli-
ficada. Primer es considera un tub de flux magnètic circular sense depressió magnètica de
manera que només el gradient de pressió exerceix de força restauradora contra la gravetat.
Es deriven expressions anaĺıtiques per a diferents possibles equilibris i les seves corresponents
freqüències d’oscil·lació. Es troba que les protuberàncies poden tenir diversos equilibris esta-
bles o inestables sotmesos a la posició inicial del fil, la seva densitat i longitud i a la longitud
total de la ĺınia de camp magnètic. La transició entre els dos tipus de solucions es produeix
en els punts de bifurcació que es determinen anaĺıticament per alguns casos en particular.

Finalment, l’efecte de les depressions magnètiques en l’estructura magnètica corba s’incorpora
a les expressions anaĺıtiques. Per a una protuberància ben formada on el plasma fred s’allotja
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en la depressió magnètica, el sistema desenvolupa una solució estable a la part inferior de la
depressió, més dos parells de punts fixos estables i inestables en els caires laterals del tub.
Amb aquest sentit, dos estats estables qualitativament diferents coexisteixen, espećıficament
la solució del centre, estable per pertorbacions relativament petites, i els punts fixos més
externs dels laterals. Altrament, les protuberàncies inicialment col·locades al voltant de de-
pressions curtes i poc profundes desenvolupen un punt d’equilibri central inestable que fa
que la protuberància caigui quan es desplaça lateralment.
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Resumen

Las protuberancias solares son estructuras de plasma que se elevan hasta unos 100 Mm sobre
la superficie del Sol. Las protuberancias son 100 veces más densas y fŕıas que la corona solar
que las rodea y se observan sobre el limbo del Sol como estructuras brillantes en forma de
nube o sobre el disco solar como cuerpos oscuros filamentosos. Para mantenerse suspendidas
en la tenue corona, las protuberancias se sostienen mayormente por los campos magnéticos
que contrarrestan la fuerza de la gravedad. A lo largo de los años, estas espectaculares
estructuras han despertado la curiosidad de de muchos observadores y teóricos que han
llevado a cabo un enorme avance en la comprensión de naturaleza altamente dinámica de
las protuberancias. Sin embargo, varias cuestiones pendientes aún requieren una respuesta.

En esta Tesis centramos nuestra atención en el estudio de oscilaciones en protuberancias
solares y en la investigación de su estabilidad gravitatoria. Por ejemplo, aún no se ha
alcanzado una comprensión completa de los mecanismos que impulsan las oscilaciones y su
atenuación. Por otro lado, en esta Tesis proponemos un análisis completamente nuevo de la
estabilidad de los plasmas densos basado en el balance entre los gradiente de presión y la
fuerza de la gravedad.

Mediante simulaciones numéricas realizamos un estudio de oscilaciones verticales, transver-
sales y longitudinales resolviendo las ecuaciones ideales de la magnetohidrodinámica (MHD)
para un amplio rango de parámetros. Estudiamos la periodicidad y atenuación de las os-
cilaciones provocadas para un modelo de protuberancia en forma de cortina en un campo
magnético en forma de arco sin cizalladura y con depresión magnética. Se muestra que las
oscilaciones longitudinales se ajustan al modelo de péndulo, cuya fuerza restauradora es la
fuerza de la gravedad proyectada sobre la ĺıneas de campo, aunque otros mecanismos como
por ejemplo gradientes de presión pueden contribuir al movimiento. Por otro lado, las oscila-
ciones transversales están sujetas principalmente a fuerzas magnéticas. La atenuación de las
oscilaciones transversales se investiga mediante el análisis de la distribución de velocidades
y el cálculo de los modos continuos de Alfvén. Se llega a la conclusión de que la absorción
resonante es la principal causa. La atenuación de las oscilaciones longitudinales se debe a
algún tipo de viscosidad numérica por cizalladura.

Las simulaciones para nuestro modelo de protuberancia se extienden con la incorporación
de una fuerte cizalladura en la arcada magnética. La redistribución de las depresiones
magnéticas debida a la cizalladura hace que la protuberancia sea inestable para desplaza-
mientos a lo largo de las ĺıneas de campo magnético. Investigamos otros tipos de estructuras
magnéticas, pero se encontró que pod́ıan ser inestables. Por este motivo, se decidió investigar
la inestabilidad gravitatoria de las protuberancias para un modelo sencillo.

Analizamos la inestabilidad para hilos individuales de plasma en una configuración muy sim-
plificada. Primero se considera un tubo de flujo magnético circular sin depresión magnética
de modo que sólo el gradiente de presión ejerce de fuerza restauradora contra la gravedad.
Se derivan expresiones anaĺıticas para los diferentes posibles equilibrios y sus correspondi-
entes frecuencias de oscilación. Se encuentra que las protuberancias pueden tener diversos
equilibrios estables o inestables sujetos a la posición inicial del hilo, su densidad y longitud
y a la longitud total de las ĺıneas de campo magnético. La transición entre los dos tipos de
soluciones se produce en los puntos de bifurcación que se determinan anaĺıticamente para

9



algunos casos en particular.

Finalmente, el efecto de las depresiones magnéticas en la estructura magnética curva se
incorpora a las expresiones anaĺıticas. Para una protuberancia bien formada donde el plasma
fŕıo se aloja en la depresión magnética, el sistema desarrolla una solución estable en la parte
inferior de la depresión, más dos pares de puntos fijos estables e inestables en los bordes
laterales del tubo. En este sentido, dos estados estables cualitativamente diferentes coexisten,
espećıficamente la solución del centro, estable para perturbaciones relativamente pequeñas,
y los puntos fijos más externos de los laterales. Por otro lado, las protuberancias inicialmente
colocadas alrededor de depresiones cortas y poco profundas desarrollan un punto de equilibrio
central inestable que hace que la protuberancia caiga cuando se desplaza lateralmente.
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more for their company along these years.

And last but not least, I am eternally grateful to my parents Andreu and Paula, and my
siblings Alicia and Sergi, to be part of my life throughout this journey.

11



List of publications
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Chapter 1

Introduction

1.1 Solar prominences

Solar prominences are impressive plasma structures abounding in the solar atmosphere.
They can be observed as bright cloud-like objects above the solar limb (see Figure 1.1) or as
dark filament structures on the solar disk. These features consist of dense and cool plasma
that is suspended in the solar corona at heights up to 100 Mm above the solar surface.
Typically, these plasma clouds are hundred times cooler and denser than the surrounding
material, hence, their presence can only be explained by the existence of an external force
that counteracts the gravity and provides thermal isolation. This counteracting force is the
magnetic force. Thanks to the tremendous improvement of observation techniques as well as
the development of theoretical models and numerical simulations, comprehensive knowledge
regarding the physics of solar prominences has been generated. However, there are still
several open issues that deserve to be addressed.

1.1.1 Historical background

The first systematic observations of solar prominences date back to the second half of the
19th century (see Tandberg-Hanssen 1995). Even much earlier than that, some observations
had reported the rare occurrences of total solar eclipses. The first description of a prominence
seems to have been made by Muratori during the eclipse of 1239 (see Secchi 1875; Bhatnagar
& Livingston 2005) in which he described a ‘burning hole’ in the corona. In the 18th century
only a few events were studied by Vassenius in 1733 and by Ulloa in 1778, but here the
observed figures were described as clouds or holes on the Moon.

The speculative observations stopped during the eclipse of 1860 with the emergence of pho-
tography and since that time, prominences have been identified as solar features. Photog-
raphy helped to classify the morphology, the distribution, and the motion of prominences
in different categories. A second important advance in the study of prominences was the
development of spectroscopy which allowed the analysis of the composition of these struc-
tures. Important parameters such as the temperature or the density can be derived from
spectroscopic data. This new observation technique was introduced for the first time dur-
ing the eclipse of 1868 and it entailed the discovery of a new element never observed on
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1.1. SOLAR PROMINENCES

Figure 1.1: A solar hedgerow prominence at the sun’s edge. Credit: Solar Dynamics Obser-
vatory, NASA.

Earth, namely Helium (Lockyer 1868). Spectroscopy also made it possible to observe the
Sun without eclipses (Janssen 1869), and therefore allowed more regular observations. Ob-
servers could identify motions and eruptions of prominences and even their threaded fine
structure, or the correlation between the number of prominences with the solar activity or
sunspots. However, all those studies were made in prominences located above the solar limb.
With the invention of the spectroheliograph in 1890 it was possible to study the solar corona
on the disk in particular spectral lines (Hα line of hydrogen at 6563 Å or the K lines of
ionised calcium). Since then, the bright features observed in emission at the solar limb,
called filaments, can be seen in absorption as dark structures on the solar disk. Prominences
and filaments denote the same phenomenon and both terms are used interchangeably. The
observation of dark filaments as a function of latitude provided an accurate proof of the solar
differential rotation. Years after, in 1931, the coronagraph was introduced by Bernard Lyot
in order to study the whole corona outside of a total eclipse, ignoring the strong emission of
the solar disk (Lyot 1930, 1939).

The epoch from 1860 to 1960 was considered by Tandberg-Hanssen (1995) as the spectro-
graph period, whereas the time after 1960 was described as the polarimetric period. The
magnetic character of solar structures such as sunspots, studied for the first time by Hale
(1908), anticipated the importance of measurements of the magnetic fields. The starting
point of the polarimetric period is the study of Zirin & Severny (1961) who measured the
magnetic field of a prominence with a magnetograph derived from the Zeeman splitting effect.
When technology allowed regular observations without the use of eclipses, the ground-based
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1.1. SOLAR PROMINENCES

solar optical facilities expanded throughout the Globe. The vast range of locations of solar
observatories allow twentyfour hours a day solar tracking, however, their instruments are
limited by the atmospheric absorption. Space missions, such as the Solar and Heliospheric
Observatory (SOHO) launched on 1995, the Japanese mission HINODE or the Solar Dynam-
ics Observatory (SDO), daily send spectacular high resolution images of the plasma motions
or the fine structure of prominences that allow their study (see Vial 2015, for a detailed
historical background).

Figure 1.2: Single plume of plasma. Credit: Solar Dynamics Observatory, NASA.

1.1.2 Basic properties of prominences

Observations of solar prominences made over the years have shown their heterogeneous
properties. They vary in shape, size, location, lifetime, and dynamics which complicates
their categorisation. Moreover, when the observations started being more systematic, it
was observed that the number of filaments varied with the solar activity that involves the
existence of a connection between prominences and magnetic fields. Some examples of solar
prominences are shown in Figures 1.1 and 1.2. Figure 1.1 shows a solar prominence at the
Sun’s edge. This type of filament is named hedgerow prominence because it looks somewhat
like a hedge of bushes. It is characterised by a few points of contact with the surface. Another
type of prominence is shown in Figure 1.2. In this case the prominence consists of a single
plume. It rises up from the Sun and reaches the size of many Earth diameters. Other types
of observed prominences are arch, pillar, or pyramid-shaped plasma structures.

In order to understand the nature of solar prominences, different classifications have been
proposed and are still in general use. An extensive pioneering classification was carried out
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1.1. SOLAR PROMINENCES

by Secchi (1875), who divided simple forms from compound forms into different blocks and
included detached and eruptive (or short-lived) prominences as a different group. As the
observations improved, the connection between prominences and sunspots gained importance
(Pettit 1932; Newton 1935). Jones (1958) reviewed the classification of solar prominences
made by Menzel & Evans (1953). In their study the motion of the material within the
prominences or the relationship with sunspots together with their characteristic form were
taken into account.

Nowadays, prominences are in general divided into three different groups: quiescent, active
and intermediate prominences. For this organization the magnetic character of the location
of the filaments is more important than the shape of the plasma. Since the magnetic field
strength turns out to be the dominant force of the prominence environment, it is feasible that
the magnetic fields control the prominence structure and dynamics. The first group includes
prominences observed in areas distant from strong magnetic fields, known as the quiet Sun
(about 10 G), that is typically located at high latitude regions. In their global appearance
they are stable structures and have life-times of weeks up to months. Their density ranges
between 109−1011 cm−3 (e.g. Hirayama 1971, 1986; Bommier et al. 1986; Li et al. 1998) and
their core temperature lies between 6, 000 K to 10, 000 K (Stellmacher et al. 2003; Parenti
et al. 2005). The dimensions of the filament range from 60 Mm to 600 Mm in length, from
15 Mm to 100 Mm in height and from 5 Mm to 15 Mm in thickness, although these values may
vary depending on the author. The main prominence plasma parameters are summarised
in Table 1.1. With the aim of providing a statistical analysis, various automated detection
procedures, classification, and tracking of solar filaments have been elaborated (Bernasconi
et al. 2005; Wang et al. 2010). Active prominences are located in the active regions of the Sun
characterised by strong magnetic fields (about 100 G) and adjacent to sunspots. In contrast
to quiescent prominences, active filaments are dynamic structures and may last from only
minutes to hours. Their temperature and density are higher than those of the quiescent
prominences, but they have smaller dimensions (see Priest 1989). The intermediate group
is located at the border of active regions, with one end close to the active region and the
other one far from there. In Figure 1.3 the three types of filaments are marked by coloured
arrows.

Physical parameters
Electron Density (cm−3) 109 − 1011 Adapted from Labrosse et al. (2010).

Temperature (K) 6,000-10,000
Gas pressure (dyn cm−2) ∼ 0.02− 1
Hydrogen ionization ratio 0.2− 0.9

Length (Mm) 60-600 Adapted from Tandberg-Hanssen (1995).
Width (Mm) 5-15
Height (Mm) 15-100

Table 1.1: Main prominence plasma parameters in the cool core of quiescent prominences.

The structure of filaments consists of three different components: spine, two extreme ends,
and barbs. The spine is the longitudinal axis of the plasma that runs horizontally along the
axis of the structure and ends in the extreme legs of the prominence. The spine is clearly
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Figure 1.3: Illustration of the three types of filaments, which are seen as dark structures
against the bright chromosphere. The red arrows point to active region filaments; the green
arrows point to intermediate filaments; and the blue arrows point to quiescent filaments.
Adapted from Luna et al. (2018).

discernible when it is seen against the solar disk in absorption, however at the limb it is less
conspicuous. The third component are the filament barbs that emerge from the sides of the
filament and extend down from the spine to the chromosphere tracing an acute angle with
respect to the long axis of the filament. The high resolution observations show that these
structures are formed by individual thin thread-like plasma structures that trace the local
magnetic field. One can observe fine structures with widths down to the resolution limit
(around 0.1 Mm). Prominence threads are dynamic structures and have a lifetime of only a
few minutes which is a shorter lifetime than the one of the whole structure. These fine threads
can be observed horizontally oriented or as quasi vertical bright threads. Observations show
that in these thin threads the plasma flows with velocities of about 10 km s−1.

The cool core of prominences joins with the hot corona by means of a very thin interface (of
the order of a few hundred km) called prominence-corona transition region (PCTR). This
thin layer is characterised by a strong temperature gradient. The optically thin emission of
prominence plasma mostly comes from the PCTR (Parenti 2015). This external envelope
has been studied in detail through observations of UV-EUV lines. This inhomogeneous layer
also plays an important role in the explanation of the damping of transverse prominence
oscillations which is resonant absorption (Okamoto et al. 2015; Antolin et al. 2015).

1.1.3 Magnetic structure

Prominences are supported against gravity by the magnetic environment. The structures
that provide this magnetic support are the filament channels. This channels are regions
in the chromosphere that surround neutral lines which divide extended areas of magnetic
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fields of opposite polarity. These lines are called Polarity Inversion Lines (PILs). Filament
channels tend to stand in the chromosphere for long periods of time and a sole channel can
conceive many successive filaments. In the chromosphere the magnetic field of the filament
channel is predominantly horizontal and pointing in the same directions on the two sides of
the channel. Moreover, this magnetic field expands into the corona in the form of magnetic
arcades that are anchored in the opposite polarity regions on either side of the channel. The
magnetic arcades have a strongly sheared magnetic component along the inversion line. The
prominence plasma is embedded in this magnetic field. The filament spine does not tend to
be aligned with the magnetic component and the angle between both deviates about 25º each
other. To counteract the gravity force that pushes the plasma downwards, the z-component
of the Lorentz force must be positive, so that the field lines have to describe a concave
upwards curvature called magnetic dip. Dips can be created by the weight of prominence
plasma that bends the field lines so that the shape of the dipped lines is determined by the
balance between magnetic and gravitational forces. Another possibility is that the dips exist
in force-free magnetic configurations in absence of prominence plasma. In this second case,
the filament plasma is likely to be located near the dips of the field lines.

In the past, various models for prominence magnetic structures have been proposed (See
Tandberg-Hanssen 1995; Mackay et al. 2010). The earliest models (Menzel 1951, Dungey
1953 and Kippenhahn and Schluter 1957) obtained solutions for the support of quies-
cent prominences in a magnetohydrostatic equilibrium. They considered an isothermal gas
threaded by a magnetic field described by a flux function and assuming that the magnetic
component along the prominence is null. These pioneering studies have been re-investigated
by many authors. Malherbe & Priest (1983) obtained a 2D prominence model as a current
sheet of finite vertical extension with complex-variable functions which allow a discontinuity
of the vertical field component at the location of the prominence. Hood & Anzer (1990)
generalised Menzel’s model by including a non-isothermal internal structure of the promi-
nence and allowing the third component of the magnetic field that is crucial to obtain the
magnetic shear. The models mentioned in the previous paragraph contain normal polarity
fields. This means that the apparent polarity of the field across the prominence sheet is the
same as the polarity of the underlying photospheric field. On the other hand, many authors
have proposed inverse polarity field models. In these cases, the polarity is the opposite as in
the underlying photosphere and a neutral point (B = 0) is present in the magnetic structure
between the photosphere and the filament. The typical inverse polarity model was described
by Kuperus & Raadu (1974). This model is characterised by a low pressure corona perme-
ated by a magnetic field whose field lines connect to the photosphere and a filament region
where the field lines are closed, taking the form of a magnetic-flux rope. Other examples of
inverse polarity models are van Tend & Kuperus (1978), Demoulin & Priest (1993), or Titov
& Démoulin (1999).

1.1.4 Other remarks

Several prominence formation processes have been proposed to explain how the prominence
plasma rises up to the corona (see Karpen 2015). In the Menzel and Evans prominence clas-
sification (1953), they had already distinguished between objects forming from above and
objects forming from below. In addition, these models must take observational constraints
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into account, such as the enormous range in space and time that prominences cover, their
highly dynamic properties and fine structure, or the barbs behaviour. The main models
are injection, evaporation-condensation, levitation, and magneto-thermal convection. The
models agree on the fact that the mass must come from the chromosphere. In the injection
models, the cool plasma is propelled upwards in filament channel flux tubes with sufficient
force to reach the observed heights of prominence plasma. Most injection models assert
that the force that forces this upward jets is the magnetic reconnection at the feet of the
flux tubes in the low atmosphere. In the evaporation-condensation models, localised heating
above the flux tube footpoints produces evaporation of the chromospheric plasma, which
condenses in the coronal part of the magnetic flux tube (e.g., Luna et al. 2012b). Levi-
tation models propose that cool plasma is lifted by rising magnetic fields at the PIL and
transported transverse to the magnetic field. In the magneto-thermal convection, twisted
magnetic flux emerges from the solar interior into the chromosphere beneath prominences,
forming magnetic bubbles.

1.2 Oscillations in prominences

Solar prominence oscillations have been the subject of a large number of studies and they
have been a rich source of information to perform prominence seismology and to understand
the theoretical models. Many authors establish the first systematic investigation of promi-
nence oscillations on the basis of the study of Ramsey & Smith (1966). However, as the
study itself indicates, filament oscillations had been reported by other authors some years
before, for example Dodson (1949), Ohman (1953), or Dodson & Hedeman (1964) (see Hy-
der 1966, for an historical review). Ramsey & Smith (1966) reported the motion of eleven
filaments triggered by a wave emanating from a flare. They used images from three different
wavelengths: centre Hα, Hα − 0.5Å (blue wing), and Hα + 0.5Å (red wing). They observed
that the filaments alternately appear and disappear between the red and the blue wings
due to the Doppler effect. This type of oscillation is called winking filament. The bottom
panels of Figure 1.4 show the filament disappearance (see circles) of a winking filament. An
important result was that these eleven filaments, analysed in detail by Hyder (1966), did
not exhibit any correlation between the period and the size of the flare, the distance to the
perturbation, or the dimensions of the filament. Furthermore, they found that one of the
filaments oscillated with the same frequency and damping time in four different oscillatory
events. As a consequence, it was suggested that prominences oscillate at their own character-
istic frequency in agreement with theoretical models. This result is the basis of prominence
seismology. The periodicity of the oscillations and their driving mechanisms are going to be
addressed in Chapter 2.

1.2.1 Large amplitude oscillations

Among all the different measurable quantities, the velocity amplitude was selected as the
classification parameter and distinguishes prominence oscillations into small and large ampli-
tude events (Oliver 1999). Small amplitude oscillations (SAO) are, in general, not related to
flare activity and only affect a small volume of the prominence. In addition, oscillatory am-
plitudes are usually smaller than 10 km s−1. These periodic motions are mostly interpreted as
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Fig. 1. from The Filament–Moreton Wave Interaction of 2006 December 6
Gilbert et al. 2008 ApJ 685 629 doi:10.1086/590545
http://dx.doi.org/10.1086/590545
© 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Figure 1.4: Top panel: Propagating wave observed in Hα data. Middle panel: Initial stages
of a winking filament response to the passing wave in Hα. Bottom panel: Same as in the
middle panel but in He I (λ10830) intensity. Adapted from Gilbert et al. (2008).

magnetohydrodynamic (MHD) waves. To comprehend the nature of the oscillatory modes,
the dispersion relation of ideal MHD equations has been derived for different models. Joarder
& Roberts (1992a,b, 1993) investigated in a set of three articles the normal oscillation modes
of a 3D plasma slab embedded in an uniform longitudinal, transverse, and skewed magnetic
field in the absence of gravity. The gravitational term was considered in Oliver et al. (1993).
In a more complex configuration, Dı́az et al. (2001) examined the MHD waves of a single
prominence fibril surrounded by coronal medium. From these articles a wide range of os-
cillatory modes were obtained and the oscillatory period of the prominences was estimated
(see Arregui et al. 2018, for a detailed review of SAO).

In this Thesis we are more interested in large amplitude oscillations (LAO) which are usually
triggered by the interaction between the filament and an energetic external phenomenon
that shakes the entire prominence (or a large part of it). Some trigger mechanisms are solar
flares (Jing et al. 2003; Li & Zhang 2012), Moreton waves (Eto et al. 2002; Gilbert et al.
2008), Extreme ultraviolet Imaging Telescope (EIT) waves (Okamoto et al. 2004), or coronal
shock waves (Hershaw et al. 2011; Shen et al. 2014b). Top panel of Figure 1.4 shows the
propagation of a wave front (see arrows) that activates oscillations in a filament located at
a large distance from the origin of the associated flare. In some cases the oscillations are
associated to eruptive filaments. The velocity amplitudes associated with LAO are of the
order of 20 km s−1 or higher. After the first time LAO have been reported by Ramsey &
Smith (1966), scarce events were observed until the 2000s (Vrsnak 1984; Vrsnak et al. 1990).
From 2002 onwards, the number of observational studies began to increase. In general,
LAOs have been considered as a rare phenomenon, but Luna et al. (2018) have catalogued
196 filament oscillations in a period of six months (January to June 2014). Ninety of these
events have been classified as LAOs. This indicates that LAOs are a frequent phenomenon.
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Since the development of observation techniques and the implementation of an extensive
network of sophisticated ground- and space-based observatories, a huge number of oscillatory
events in prominences have been reported in detail. Different methods have been used to
analyse the periodicity and the damping time of the oscillations. When the prominence
is seen on the solar disk and it oscillates vertically (along the line of sight (LOS)), no
horizontal motions can be detected. In these cases, to study the filament movement, the
time sequence of different wavelength Hα images has to been analysed. The filament appears
and disappears from one Hα wing to another one due to the Doppler shift, indicating the
vertical oscillatory motions. Thus, the intensity contrasts as a function of time for different
Hα wavelengths describe an oscillatory curve from which it is easy to obtain the parameters
of the oscillation by fitting an exponentially decayed sine function (see Shen et al. 2014a) or
a Bessel curve Knizhnik et al. (2014). When the motion of the filament is horizontal with
respect to the LOS, to analyse the oscillation parameters, it is possible to study the time
distance diagrams obtained by placing slits along the direction of movement and measuring
the intensity along each slit as a function of time. Then, the position of the centre of mass
of the thread is identified by finding the intensity minimum along the slit. Finally, these
points are fitted to a curve that gives the period and damping time of the oscillation (see
Figure 1.5). Selecting the best direction of each slit is not trivial (Knizhnik et al. 2014), so
that a good criterion must be followed. It is important to keep in mind that if the oscillations
are seen without gaps, where the oscillation amplitude is maximum, whether there is a clear
transition from dark to bright regions, or the maximum number of cycles. Luna et al.
(2014) have shown time–distance diagrams of an oscillatory event for three slits centred at
the same position, differing only in the angle between the slit and the main direction of
the filament (see Figure 1.6). They found that the oscillatory pattern in the time–distance
diagrams depends strongly on this angle. Another point is that many oscillations do not
follow straight trajectories so that straight slits cannot be used (Bi et al. 2014). Luna
et al. (2018) generated artificial curved slits to match them with the trajectory of the cool
plasma. An alternative method is to simply trace the trajectory of the position of the mass in
subsequent images (see Jing et al. 2003, 2006; Vršnak et al. 2007). A more sophisticated data
analysis technique is the wavelet analysis. From the wavelet spectrum, Pintér et al. (2008)
investigated the temporal and spatial variations of an oscillating filament to find the period
more accurately. Another point to keep in mind is the effect of the solar rotation. When the
filament is observed on the disk, the rotation makes the impression that the prominence is
moving upwards (downwards) when it is placed at the West (East) so that the Hα images
are shifted to red- (blue-) wavelength wings. In addition, when the prominence is located at
the solar limb, it is necessary to determine the apparent height above the limb.

Eto et al. (2002) observed vertical oscillations in a winking filament activated by a distant
Moreton wave. In some cases the disturbing wave is too weak to be visible so that the
interaction between the filament and the wave allows to infer the wave speed by studying
the filament response (Gilbert et al. 2008; Shen et al. 2014a). In other cases a single wave can
simultaneously activate oscillations in more than one filament (Okamoto et al. 2004; Shen
et al. 2014a,b), but it is also possible that the same disturbance that produces oscillations in
one filament is not able to induce oscillations in a neighbour filament. Another feature is that
the same prominence can oscillate with diverse characteristic frequencies at different parts
of the body. Li & Zhang (2012) presented observations of large amplitude oscillations in the
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Figure 1.5: Time–distance diagrams from SDO/AIA 171 Å images. The data of the positions
of the centre of the dark band are plotted as orange points. The fitted functions are plotted as
red and green lines corresponding to the exponentially decaying sine and the Bessel functions,
respectively. Adapted from Luna et al. (2014).

Figure 1.6: 171 Å images of a filament that oscillates. The three white rectangles are the
three slits used to analysed the oscillations. The slits are centred at the same position,
differing only in the angle between the slit and the main direction of the filament. Adapted
from Luna et al. (2014).

southern and northern parts of a solar filament. At the same time they divided the southern
part into two different axis. They found that the two southern segments oscillated out of
phase with different periods and velocity amplitudes, and independently of the northern
part that oscillated at its own frequency. Luna et al. (2014), to analyse the motion of the
entire body of a prominence, placed 36 different slits along the filament axis at the optimal
angle with respect to it. They found that the filament only oscillates at the southern part
and at some northern points, but in this case similar values for the oscillation period along
each slit were obtained. Shen et al. (2014a) also found the same periodicity at different
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positions along the axis of a filament. When the prominence is observed above the solar
limb, it is possible to study the oscillation period as a function of height by placing various
slits at different heights. Hershaw et al. (2011) obtained that the prominence oscillates as
a collection of separate but interacting filamentary threads, however, Shen et al. (2014b)
suggested that the prominence oscillated like a vertical linear rigid body with its one end
anchored on the solar surface.

Among LAO, we can distinguish the different oscillatory events according to the polarisa-
tion of the oscillatory motion relative to the axial magnetic field. Motions are classified
as transverse, both vertical and horizontal, or longitudinal oscillations. In general, verti-
cal oscillations are associated with winking filaments. Vertical oscillations can be triggered
by fast-mode MHD shock waves originated from distant flares, for example Moreton waves
or coronal EUV waves. Since the speed of fast waves is faster in the corona than in the
chromosphere (Uchida 1968), the normal vector of the wave front points downwards as the
wave travels from the flare site, pushing the prominence downwards. The transverse os-
cillations are motions predominantly perpendicular to the filament axis. Isobe & Tripathi
(2006) reported transverse oscillations triggered by a jet-like phenomenon. The oscillatory
motion was seen only in a part of the filament that erupted after few cycles. The same
event was studied in detail by Isobe et al. (2007) and Pintér et al. (2008). Other transverse
oscillatory events were studied by Hershaw et al. (2011), Liu et al. (2012), Xue et al. (2014),
and Pant et al. (2015). Longitudinal oscillations are periodic motions along the longitudinal
filament axis. A first large amplitude longitudinal oscillation was reported by Jing et al.
(2003). The movement was initiated by a subflare that occurred near its footpoint. After
this first detection, many observations of longitudinal oscillations have been reported (Jing
et al. 2006; Vršnak et al. 2007; Zhang et al. 2012; Li & Zhang 2012; Zhang et al. 2013;
Knizhnik et al. 2014; Zhang et al. 2017, 2020). A summary of the observed prominence
oscillation parameters reported in some papers mentioned in this work is listed in Table 1.2.
The studies are very diverse and must be analysed on a case-by-case basis. Some authors
analyse a single filament, others a few number of prominences oscillating during the same
event, and Luna et al. (2018) catalogue 196 different filament oscillations. Furthermore,
there are many authors that extract more than one value for the same event depending on
the position of the slit they use. These facts make that the values in Table 1.2 are expressed
as a range of values. In general we have that transverse oscillations have shorter periods
than longitudinal oscillations but it is difficult to define a range of values due to the diversity
of results. It stands out the study of Hershaw et al. (2011) who observed long period trans-
verse oscillations. The damping time per period (td/P ) also shows a wide range of results
but most events are strongly damped (td/P < 3). Low values of td/P mean strong damping
and high td/P corresponds to undamped oscillations. On the other hand, negative values
of td/P mean that the amplitude of oscillation grows with time. The other two parameters
listed in Table 1.2 are the maximum displacement of the filament mass with respect to the
equilibrium position (A) and the velocity amplitude (v). Luna et al. (2018) found that for
SAO (v < 10 km s−1) A < 5 Mm in most of cases. In the catalogue the authors also found
that periods tend to increase with the filament width in quiescent prominences, that larger
velocity amplitudes are positively correlated with stronger damping, that for longitudinal
oscillations the displacement is larger, or that longitudinal oscillations are more frequent
than transverse oscillations (only one event of vertical oscillations have been reported in the
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last years).

Prominence oscillation parameters
Polarisation P (min) td/P A (Mm) v (km s−1) Reference

Longitudinal 34-73 1.2-1.8 1.3-30 3.5-52.4 Zhang et al. (2020)
Longitudinal 30-110 −6.2-9 < 1-47 1-54.6 Luna et al. (2018)

Horizontal transverse 30-80 −4-6.2 < 1-13 1-22.9
Longitudinal 52.7-73.2 −24.2-104.5 ∼ 10 < 1-30 Zhang et al. (2017)

Horizontal transverse 61–67 1.5-1.9 8-13 12-22 Pant et al. (2015)
Horizontal transverse 13.5 2.3-4 ∼ 10 65.3-89.6 Shen et al. (2014b)

Longitudinal 80.3 - - 26.8
Vertical transverse 11-22 1.3-3.8 - 6-14 Shen et al. (2014a)

Longitudinal 42-51.6 1.3-2.8 17-40 17-47 Luna et al. (2014)
Longitudinal 44-67 - ∼ 25 30-60 Li & Zhang (2012)

Horizontal Transverse 27.2-28 3.3-5 2.2-2.5 8.3-9.4 Liu et al. (2012)
Horizontal transverse 85.9-138 0.9-4.3 3.9-40.1 4.9-41.5 Hershaw et al. (2011)

Table 1.2: Prominence oscillation parameters.

To explain the different oscillations, various models have been proposed. Hyder (1966) con-
sidered the movement as a damped harmonic oscillator embedded in a viscous fluid and
in a uniform gravitational field, whose restoring force is the magnetic tension. Kleczek &
Kuperus (1969) studied horizontal transverse oscillations as a damped free oscillator with
the magnetic tension as the restoring force, and radiation of acoustic waves as the attenu-
ation mechanism. Using these assumptions, they found that the oscillation period (P ) for
horizontal transverse oscillations is

P = 4πLB−1
√
πρp, (1.1)

where 2L is the length of the prominence, B is the magnetic field strength, and ρp is the
prominence density. Later, Jing et al. (2003) proposed different mechanisms to explain the
physics of an oscillatory motion along a filament observed on October 24th 2001. Firstly,
they suggested as the driving mechanism the gravitational force when a concave upwards
magnetic flux tube is considered as the main configuration of the cool filament thread.
The second possibility they proposed to explain the oscillations was a pressure imbalance
that drives plasma motions along field lines. Finally, they suggested as a restoring force the
magnetic tension for motions perpendicular to the local magnetic field. Furthermore, Vršnak
et al. (2007) detected oscillations along a filament on January 23rd 2002 and proposed that
the restoring force of the motion was caused by the magnetic pressure gradient along the
filament axis, and Li & Zhang (2012), who studied longitudinal oscillations in a solar filament
on April 7th 2012, suggested that the restoring force was the coupling between the magnetic
tension and the gravity. Finally, Luna & Karpen (2012) proposed that the main restoring
force is the projected gravity along the magnetic field. They found that the periodicity of
longitudinal oscillations depends on the radius of the curvature of the magnetic dip as

P = 2π
√
R/g , (1.2)
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where g is the solar gravity acceleration. This model is called the pendulum model.

An important characteristic of the reported events is that in most cases the amplitude of
the oscillations attenuates. In the first study, Ramsey & Smith (1966) already mentioned
that the observed winking filaments rapidly damped and only few oscillations were visible,
between one and a half and four cycles. On one side, Hyder (1966), who listed the char-
acteristic decay constant of the 11 filaments studied by Ramsey & Smith (1966), suggested
that the attenuation was caused by viscosity in the corona. On the other hand, Kleczek &
Kuperus (1969) assumed that transverse oscillations are damped by the emission of acoustic
waves from the prominence. In more recent studies, other mechanisms have been proposed
to explain the observed damping, for example thermal damping such as radiative cooling
(Terradas et al. 2001) and heat conduction (Soler et al. 2007), ion-neutral collisions in par-
tially ionised plasmas (Forteza et al. 2007), mass flows (Ruderman & Luna 2016; Soler et al.
2008), wave leakage (Schutgens & Tóth 1999), or resonant absorption (Goossens et al. 2002).
The most accepted damping mechanism in transverse oscillations seems to be the resonant
absorption (see Section 1.3.1). It appears in the prominence-corona transition region, where
the global oscillation of the whole prominence is transferred to Alfvén continuous modes
whose amplitude grows with time until all the energy of the global mode has been trans-
ferred and phase mixing develops (Arregui et al. 2018). By contrast, Luna et al. (2014)
proposed that longitudinal oscillations are damped by continuous mass accretion onto the
filament threads. However, Zhang et al. (2012) obtained that in order to explain the decay of
the observed longitudinal oscillations, a combination of radiation and heat conduction plus
wave leakage and mass accretion must be considered. Damping mechanisms for oscillations
in solar prominences are reviewed by Arregui & Ballester (2011). The damping of transverse
oscillations is going to be addressed in Chapter 2.

1.2.2 Prominence seismology

From the properties of the oscillations such as their periodicity, damping time, or polariza-
tion, and the characteristics of the filament body, it is possible to derive the physical con-
ditions of a medium. This process is called prominence seismology (Ballester 2014, 2015).
Traditionally, we separate the seismology methods by using LAO from SAO. The models
that explain LAO are based on linear oscillators whose restoring forces are magnetic ten-
sion, magnetic pressure gradient or projected gravity. In the case of SAO, the oscillations
are interpreted in terms of MHD waves in idealised prominence models, such as prominence
slabs (Joarder & Roberts 1992a,b, 1993; Oliver et al. 1992, 1993; Oliver & Ballester 1995;
Dı́az et al. 2001, 2003) or cylindrical flux tubes (Goossens et al. 1992; Dı́az et al. 2010; Soler
et al. 2010), that provide a variety of MHD modes with their own characteristic frequency.

The first attempt to measure magnetic fields from the parameters of LAO (see Oliver 2009;
Arregui et al. 2018, for reviews on prominence seismology using SAO) was made by Hyder
(1966). Based on his damped harmonic oscillator model, he calculated the radial component
of the filament magnetic field and the coronal effective viscosity coefficients. This method
was also utilised in transverse oscillations by Shen et al. (2014b). According to the model
of Kleczek & Kuperus (1969) (see Equation (1.1)), Isobe & Tripathi (2006) estimated the
Alfvén velocity and the magnetic field that causes the restoring force of a transverse horizon-
tal oscillation. They assumed a filament density of ρ = 10−13 g cm−3 and from the measured
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values of L = 100 Mm and P = 120 min they obtained the reasonable values vA = 87 km s−1

and B = 9.8 G. In a similar analysis, Gilbert et al. (2008) inferred a magnetic field of
B = 30 G. They suggested that the large inferred field strength is consistent with the rel-
atively smaller size and height of their filament. Luna et al. (2018) also used the Kleczek
and Kuperus equation to estimate the magnetic field strength of 33 transverse oscillatory
events. It is important to mention that Luna et al. (2018) did not distinguish between LAO
and SAO for seismology purposes. It does not seem strange that for LAO some authors
utilise seismology methods associated to SAO or vice versa. For example, Pant et al. (2015)
made MHD seismology of a loop-like filament tube by observing transverse large amplitude
oscillations. They used the thin tube thin boundary approximations (see Goossens et al.
2008) to estimate the magnetic field and the thickness of the non-uniform layer of the tube
(see Equation (1.54)). Mazumder et al. (2020) also studied large amplitude transverse os-
cillations applying MHD models based on the studies of Dı́az et al. (2002) and Dymova &
Ruderman (2005). Getting back to the oscillator models, it is worth to mention that while
Isobe & Tripathi (2006) used the Kleczek and Kuperus equation to estimate the magnetic
field strength of a transverse oscillation, for the same oscillatory event, Pintér et al. (2008)
calculated the poloidal and axial component of the magnetic field by using the same method
as Vršnak et al. (2007) utilised for seismology purposes in large amplitude longitudinal os-
cillations. Vršnak et al. (2007) considered longitudinal oscillations to be a simple harmonic
motion so that they developed a simple model to obtain the poloidal and axial component of
the magnetic field. This method was also utilised in longitudinal oscillations by Shen et al.
(2014b). However, the most widely used seismology method in longitudinal oscillations is
based on the pendulum model. Several authors estimated the curvature radius of mag-
netic dips from Equation (1.2) for their reported longitudinal oscillations (Luna et al. 2014;
Knizhnik et al. 2014; Bi et al. 2014; Zhang et al. 2017; Luna et al. 2018; Zhang et al. 2020).
Specifically, Luna et al. (2018) obtained that the curvature radius ranges from R = 25 Mm to
R = 300 Mm with a mean value of R = 89 Mm. Furthermore, based on the pendulum model
it is possible to estimate the minimum field strength as a function of the thread oscillation
period (Luna & Karpen 2012),

B ≥
√
g02mn

4 π2
P, (1.3)

being n the particle number density in the thread, m the mean particle mass, and g0 the
gravitational acceleration at the solar surface. From Equation (1.3), Luna et al. (2018) found
that the magnetic field ranges from B = 9 G to B = 48 G.

1.3 Basic equations

The Sun is made of plasma which is an electrically conducting fluid and therefore it interacts
with magnetic fields. To describe its dynamics, it is necessary to solve a simplified form of
Maxwell’s equations (Faraday’s, Ampere’s, and Gauss’s laws, and the solenoidal condition)
simultaneously together with the fundamental equations of fluid dynamics. The mathemat-
ical model that merges both formalisms is Magnetohydrodynamics. MHD was introduced
for the first time by Hannes Alfvén in 1942 (Alfvén 1942). The basic equations of MHD
are derived in detail in Chapter 2 of Priest (2014). As a first approximation, MHD neglects
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relativistic effects, since the characteristic electromagnetic or plasma speeds are all assumed
to be much smaller than the speed of light (c). This assumption implies that local accumu-
lations in time of charge (displacement current, 1

c2
∂E
∂t

) are negligible in the Ampere’s law,
or that electric currents flow in closed circuits (∇ · j = 0). A second assumption is that
plasma in solar atmosphere is electrically neutral. This neutralization effectively takes place
over a distance of a few Debye shielding lengths (λD) (Goossens 2003), which is a measure
of the distance over which electrons can deviate appreciably from positive ions (Coulomb
interactions). If the length scales of the dynamics of plasma are near or less than λD, then
the approximation breaks down and significant deviations from quasi-neutrality occur.

A third assumption is the treatment of the plasma as a continuous fluid assuming that
it is in thermodynamic equilibrium. The continuum assumption is valid for lengths and
time scales of global motions that are considered much larger than the spatial scales (mean-
free path, λmfp) and shorter than temporal scales (collision time, τn) that characterise the
microscopic processes that couple the particles. Furthermore, the charged particles are tied
to the magnetic field lines. The charged particles move in circles (cyclotron motions) of
radius rL around the magnetic field lines at a frequency ΩL. rL and ΩL are the Larmor
radius and frequency, respectively. In this context, the MHD approximation is valid when
the global length and time scales are larger than the Larmor parameters. In the solar corona
(where T = 106 K, B = 10 G, and the ion number density ni = 1013 m−3 ) we have that
λL ∼ 0.02 m, λmfp ∼ 1 Mm, τn ∼ 2×1020 s; and Ω−1L ∼ 5.7×10−9 s, rL ∼ 0.02 m for electrons,
and Ω−1L ∼ 10−5 s, rL ∼ 1 m for ions. In this way, the MHD requirements listed in this
section are satisfied in the considered coronal environment and in the phenomena studied in
this Thesis, so that this theory provides an accurate description of many of the complicated
interactions of magnetic fields with the solar plasma.

Finally, we consider in this Thesis that plasma is fully ionised. The sun is mostly ionised
due to the high temperature and the corona, with temperatures of the order of 106 K, is not
an exception. However, in cooler layers such as the photosphere and the lower chromosphere
as well as in solar prominences, the presence of neutrals has important physical effects, for
example for chromospheric heating (Khomenko & Collados 2012), prominence equilibrium
(Terradas et al. 2015b), resonant absorption (Soler et al. 2009a, 2011), or coronal rain (Oliver
et al. 2016). When the degree of ionisation, that is the proportion of neutrals and ions that
are ionised, is small, the plasma is partially ionised. Neutrals do not interact with magnetic
fields but are coupled with ions through collisions. To describe the interaction between
the different kind of particles it is considered that each of the components of the plasma
(electrons, ions, and neutrals) can be treated as a separate fluid through a multi-fluid theory
(Khomenko et al. 2014a; Ballester et al. 2018). The single-fluid MHD equations used in this
Thesis derive from the multi-fluid equations when the high-frequency short scale dynamics of
the electrons and ions are removed, and when collisional invariance, that neglects the collision
terms, is considered. However, in partially ionised plasmas, the coupling between neutrals
and ionised components of the magnetised plasma, that introduces physical effects such as
Cowling’s resistivity, isotropic thermal conduction by neutrals, heating due to ion/neutral
friction, heat transfer due to collisions, charge exchange, or ionization energy, must be taken
into account (Ballester et al. 2018).

In spite of the importance of partially ionised plasmas, in this Thesis we neglect the effects
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of neutrals and deal with single-fluid MHD. The behaviour of neutrals on the support of
prominences against gravity is similar to that of fully ionised plasmas due to the strong cou-
pling between ions and neutrals (Terradas et al. 2015b) so that the simulations in Chapters 2
and 3 would not significantly change in this respect. An aspect that we have not consid-
ered in the present Thesis is the damping of the oscillations due to ion-neutral collisions
(Khodachenko et al. 2004, 2006), that is more important for fast waves than for slow waves
(Forteza et al. 2007); and how the presence of neutrals contributes to resonant absorption.
Soler et al. (2009a) found that the ratio td/P depends very slightly on the ionization degree
for resonant damping and Soler et al. (2011) found that in the range of typically observed
periods of transverse prominence thread oscillations, the effect of Cowling’s diffusion (and so
the ionization degree) is negligible. In consequence, the simplest form of the MHD equations
is a reasonable model to describe oscillations in solar prominences.

1.3.1 Ideal MHD

The result of all these assumptions is the ideal MHD equations that is used for all the main
results in this Thesis. Ideal MHD is a simplified situation and not representative for the
actual processes in nature. However, ideal MHD certainly provides good approximations
for many of the dynamical properties of hot and strongly magnetised plasmas, like those
in the solar corona (Schnack 2009), so MHD is valid for the description of large dynamical
processes like the ones studied in this Thesis.

The ideal MHD equations solved in this Thesis are

Dρ

Dt
= −ρ∇ · v, (1.4)

ρ
Dv

Dt
= −∇p+

1

µ
(∇×B)×B− ρg, (1.5)

∂B

∂t
= ∇× (v×B), (1.6)

Dp

Dt
− γp

ρ

Dρ

Dt
= 0, (1.7)

p = ρR
T

µ̃
, (1.8)

∇ ·B = 0, (1.9)

being D/Dt = ∂/∂t+v· ∇ the advective derivative. Equations (1.4)-(1.7) are eight equations
in the eight variables density ρ, fluid pressure p, velocity v (three components), and magnetic
field B (three components). We have that µ is the magnetic permeability and γ is the ratio of
the specific heat that we consider to be constant. We will take γ = 5/3, the value appropriate
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for a fully ionised gas, that corresponds to an ideal monatomic gas with 3 degrees of freedom.
Equation (1.4) is the continuity equation which describes the mass flowing into and out of a
physically volume element and expresses the conservation of matter. Equation (1.5) is the
equation of motion and describes changes in the momentum as a result of forces acting in the
fluid. The forces that act on a plasma element are expressed on the right-hand side of the
equation. The first force is the pressure gradient force, the second term is the Lorentz force,
and the third one is the gravity force. Another force that acts on the plasma but which we
have neglected is, for example, the viscous force. Temporal changes in the magnetic field are
described by the induction equation, Equation (1.6). Here we have neglected the magnetic
diffusion of the fluid so that only the advection of the magnetic field has been taken into
account. When we neglect diffusivity the fluid is a perfect conductor and, in general, the
plasma of the solar atmosphere acts as such. Under this constraint, the magnetic field lines
moves with the plasma motions. While movements along the magnetic lines do not modify
the field, transverse movements transport the lines with the flow, in that case the magnetic
field lines are termed frozen. Equation (1.7) describes the energy balance equation. We
consider adiabatic processes so that we do not take energy sources or drains such as radiative
cooling or heat conduction into account. We assume the plasma as a perfect gas so that
the equation of state is the ideal gas law, Equation (1.8), where R is the ideal gas constant
and µ̃ the mean molecular weight. Finally, there is a constraint on the magnetic field,
Equation (1.9), which is the Gauss’s law for magnetism. This constraint is the statement
that magnetic monopoles do not exist (see Roberts 2019, for a detailed description of the
MHD equations).

Alternatively, the set of ideal MHD governing equations can be expressed in terms of entropy
(s) rather than the more usual pressure or thermal energy variables, and in terms of ln ρ.
Moreover, the induction equation can be solved in terms of the magnetic vector potential
(A) defined so that the curl of A is equal to the magnetic field (B = ∇ × A), and the
equation of motion in terms of the gravity potential (Φgrav) and the electric current density
(j = 1

µ
∇×B). Thus, Equations (1.4)-(1.7) are rewritten as follows:

D ln ρ

Dt
= −∇·v , (1.10)

Dv

Dt
= −c2s∇

(
s

cp
+ ln ρ

)
−∇Φgrav +

j×B

ρ
, (1.11)

∂A

∂t
= v×B , (1.12)

ρT
Ds

Dt
= 0. (1.13)

Here, cp is the heat capacity at a constant pressure (assumed to be equal to one), and the
squared sound speed is given by

c2s = γ
p

ρ
= cs0

2 exp

[
γs/cp + (γ − 1) ln

ρ

ρ0

]
, (1.14)
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where cs0 and ρ0 are the reference sound speed and the density, respectively. In Chapter 2,
the numerical simulations of oscillations in solar prominences will be performed by solving
the Equations (1.10)-(1.13).

1.3.2 Lorentz Force

Magnetic effects in the equation of motion, Equation (1.5), are determined by the Lorentz
force 1

µ
(∇× B) × B. As B changes, the magnetic force influences the plasma changing its

velocity. The Lorentz force can be divided into two terms. First we know the vector identity

∇(A ·B) = (A · ∇)B + (B · ∇)A + A× (∇×B) + B× (∇×A) (1.15)

that reduces to

B× (∇×B) =
1

2
∇(B ·B)− (B · ∇)B (1.16)

when A = B. This expression is equivalent to

(∇×B)×B = −1

2
∇(B ·B) + (B · ∇)B. (1.17)

Introducing Equation (1.17) into the Lorentz force we obtain the following expression

1

µ
(∇×B)×B = −∇(

B2

2µ
) + (B · ∇)

B

µ
. (1.18)

By comparing the first term of the right-hand side of Equation (1.18) with the pressure force
of Equation (1.4) we can see that this term acts as a magnetic pressure force. The second
term is the magnetic tension. When we introduce a distortion or bend into a magnetic field
line it applies a tension force, just like an elastic band, that acts trying to straighten out
the field line. Since the Lorentz force is perpendicular to B, the contribution from the terms
acting in the direction along the field line must cancel. We can express the magnetic tension
as follows,

(B · ∇)
B

µ
=

1

µ
B(s)

∂

∂s
[B(s)̂s] = ŝ

∂

∂s

(
B2

2µ

)
+
B2

µ

∂ŝ

∂s
, (1.19)

where we have considered B = B(s)̂s, being ŝ the unit vector pointing along the magnetic
field and B(s) the field strength at s. From vector calculus we know that

∂ŝ

∂s
=

1

Rc(s)
n̂, (1.20)

being Rc(s) the radius of curvature of the field line and n̂ the unit vector perpendicular to
the field line. Therefore, the Lorentz force can be expressed as

1

µ
(∇×B)×B = −∇

(
B2

2µ

)
+ ŝ

∂

∂s

(
B2

2µ

)
+

B2

µRc(s)
n̂. (1.21)

We see that the component along the field line of the magnetic pressure force cancels with
the parallel term of the magnetic tension, so that only perpendicular terms contribute to
the Lorentz force. Since the sharper the bend in the field line, the smaller the radius of
curvature, we obtain that the tension force acting to straighten out the field increases with
decreasing Rc.
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1.3.3 Magnetohydrostatic equilibrium

Solar filaments are dynamic structures. However, in general we can observe that quiescent
prominences remain static for long periods of time. For this reason, the study of prominence
models are grounded in magnetohydrostatic equilibrium. The inertial term in the equation
of motion, i.e., the left-hand side term of Equation (1.5), can be neglected when the flow
speed is much smaller than the sound speed, Alfvén speed and gravitational free-fall speed,
meaning that we have a magnetohydrostatic balance between the pressure gradient, the
Lorentz force, and the gravitational force.

As a first approximation we can assume an uniform vertical magnetic field B = B0ẑ and a
gravity force that acts along the negative z-axis g = −gẑ. For this case the Lorentz force is
null so that from Equation (1.43) together with Equation (1.8) we obtain that

dp

dz
= −ρ(z)g = − gµ̃

RT (z)
p(z) = − p(z)

Λ(z)
, (1.22)

where Λ(z) is the pressure scale height. If we integrate Equation (1.22) we have that

p(z) = p0 exp

[
−
∫ z

0

dz/Λ(z)

]
, (1.23)

where p0 is the pressure at z = 0. When the temperature is constant along the field lines,
Λ(z) is uniform and Equation (1.23) reduces to

p(z) = p0 exp (−z/Λ) . (1.24)

The result is an isothermal stratified atmosphere whose pressure and density decrease expo-
nentially with z.

Force-free magnetic arcades

Under other circumstances, different from the previous case, not all the terms in Equa-
tion (1.5) are equally important. In solar prominences the Lorentz force dominates over the
gas pressure gradient and the gravity force, hence, we can consider a force-free magnetic field
that fulfills

j×B =
1

µ
(∇×B)×B = 0, (1.25)

being j the current density. When the cross product of two vectors is zero, these vectors are
parallel

(∇×B) ‖ B, (1.26)

therefore, the electric current flows along the magnetic field and we can express Equa-
tion (1.25) as

∇×B = αB, (1.27)
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being α a constant along each magnetic field line that satisfies

(B · ∇)α = 0. (1.28)

In the particular case of having the same value of α on each field line, we talk about a
constant-α field. Imposing the curl into Equation (1.27) we obtain the Helmholtz equation(

∇2 + α2
)
B = 0. (1.29)

When we consider a simple constant-α field with the form B = B(x, z), the three components
of Equation (1.29) are

∂2Bx

∂x2
+
∂2Bx

∂z2
= −α2Bx, (1.30)

∂2By

∂x2
+
∂2By

∂z2
= −α2By, (1.31)

∂2Bz

∂x2
+
∂2Bz

∂z2
= −α2Bz. (1.32)

When we take solutions of separable form, Bz = X(x)Z(z), then Equation (1.32) reduces to

1

X

d2X

dx2
= − 1

Z

d2Z

dz2
− α2 = −k2. (1.33)

The solution of Equation (1.33) is

Bz = −B0 sin(kx) exp(−lz), (1.34)

being l = (k2 − α2)1/2.

From Equation (1.27) we obtain that αBz = ∂By

∂x
and αBx = −∂By

∂z
, so that

By =
α

k
B0 cos(kx) exp(−lz), (1.35)

Bx =
l

k
B0 cos(kx) exp(−lz). (1.36)

If we impose By = 0 when kx = π/2, we have that f(z) = 0. The result is a periodic magnetic
arcade configuration whose lateral extension is related to the parameter k. The term l is a
measure of the vertical magnetic scale height and B0 is the magnetic field strength at the
reference level. When k = l, α = 0 the magnetic field is purely potential and By becomes
null. However, when α 6= 0, the magnetic component in the y-direction introduces a shear
in the system. The amount of shear in the structure is related to the parameter l/k as
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θ = atan (By/Bx) = atan
(
k2/l2 − 1

)1/2
. (1.37)

The magnetic field lines in the given configuration do not have any dips because in this
case the magnetic structure is bipolar. Since we are interested in a configuration with dips,
we select a particular superposition of two magnetic arcades that mimics a quadrupolar
configuration. In this way, the dipped magnetic arcade is expressed as follows:

Bx = l1
k1
B01 cos(k1x) exp[−l1(z − z0)]− l2

k2
B02 cos(k2x) exp[−l2(z − z0)] ,

By = α
k1
B01 cos(k1x) exp[−l1(z − z0)]− α

k2
B02 cos(k2x) exp[−l2(z − z0)] ,

Bz = −B01 sin(k1x) exp[−l1(z − z0)] +B02 sin(k2x) exp[−l2(z − z0)] .
(1.38)

The individual arcades are labelled with the subindices 1 and 2, respectively. To satisfy the
Helmholtz equation, Equation (1.29), each individual arcade must have the same α, therefore
we have the constraint

k21 − l21 = k22 − l22. (1.39)

For the new magnetic configuration, the reference level of the arcade can be located according
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Figure 1.7: Magnetic field lines in the xz-plane. In this plot B01 = B02, k1 = π/2L, k2 = 3k1,
z0 = −0.2H, and l1/k1 = 1. The y-component of the magnetic field is null. The dimensions
are to scale H.

to the parameter z0. In Figure 1.7 some magnetic field lines are plotted in the xz-plane of
an unsheared quadrupolar structure, Equation (1.38), for B01 = B02, k1 = π/2L, k2 = 3k1,
and z0 = −0.2H, where L is the width of the full structure. Figure 1.7 shows that at x = 0,
the radius of the curvature takes low positive values in the bottom part of the structure and
grows until z = 1.55H, where the field line becomes flat. From this point, the dip is lost
and the curvature becomes concave downwards.

The combination between the isothermal stratified atmosphere that fulfils Equation (1.24)
and the magnetic arcade given by Equation (1.38) will be the basis of the initial configuration
used in the numerical study of prominence oscillations in Chapters 2 and 3.
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Effect of gravity and magnetic field curvature

For the quadrupolar magnetic arcade configuration the magnetic dip is not caused by the
weight of the prominence and the magnetic field does not influence the plasma structure
when the corona background is in static equilibrium. However, the shape of the dipped field
lines can be determined by the balance between magnetic and gravitational forces. Hood &
Anzer (1990) took the magnetic field as

B = (X(x), Y (x), Z(x)) exp(−kz) (1.40)

and gas pressure as

p = P (x) exp(−2kz). (1.41)

They considered the temperature as a function of the horizontal distance T = T (x) and the
density related to the pressure and the temperature through the gas law (Equation (1.8)).
From Gauss’s law, Equation (1.9), and Equation (1.40) they obtained that

X ′ = kZ. (1.42)

When Equation (1.42) is introduced into the y-component of the magnetohydrostactic equa-
tion of motion

−∇p+
1

µ
(∇×B)×B− ρg = 0, (1.43)

we have that

Y = αX, (1.44)

being α a shear parameter. Applying the same procedure to the x-component of Equa-
tion (1.43) results in

2µP +X2 + Y 2 + Z2 = 2µPT = constant (1.45)

which leads to the equilibrium having a constant total pressure in the horizontal direction.
Finally, the vertical component of Equation (1.43) reduces to

Z ′ =
k

X

[(
1− 1

2kΛ

)
Z2 +

1

2kΛ

(
2µPT −X2 − Y 2

)
− 2µPT

]
, (1.46)

being the pressure scale height Λ(x) = RT (x)/µ̃g. Equations (1.42) and (1.46) must be
solved numerically by imposing the initial conditions at the centre of the prominence X(0) =
X0, Y (0) = αX0, Z(0) = 0, and P (0) = P0 and setting a temperature profile that resembles a
typical prominence. The result of Hood & Anzer (1990) is a 2.5-dimensional non-isothermal
magnetohydrostatic model for a prominence in a force-free coronal arcade whose dip is self-
consistently created by the weight of the heavy prominence. Figure 1.8 shows some magnetic
field lines together with the density profile in the xz-plane for a typical Hood & Anzer
prominence model (H&A, hereafter). In Section 3.3 more details about this equilibrium will
be given.
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Figure 1.8: Magnetic field lines and density in the xz-plane for a Hood & Anzer model of a

prominence. Density is normalised to
X2

0

µ v2A0
.

1.3.4 MHD waves

Since prominence oscillations are interpreted as MHD waves, in this section we review some
basic properties of MHD waves in the solar atmosphere. To describe the different modes of
oscillation, first it is considered that the amplitude of the waves is small, so that the basic
MHD Equations (1.4)-(1.7) can be linearised assuming that each physical quantity can be
written as an equilibrium value plus a perturbation and then neglecting all non-linear terms.
After the linearisation, it is possible to obtain analytical solutions for the wave frequency
in some simple models. The linearised equations are listed, for example, in Schnack (2009)
or Roberts (2019). The combination of the linearised equations reduces to a wave equation
that is the ground of the study of MHD waves.

We consider an uniform magnetic field aligned with the z-axis in an uniform medium. Under
these conditions, the linearised MHD equations can be combined to arrive at two uncoupled
wave equations, namely

∂2ωz
∂t2

= v2A
∂2ωz
∂z2

, (1.47)

and

∂4∆

∂t4
−
(
c2s + v2A

)
∇2∂

2∆

∂t2
+ c2sv

2
A∇2∂

2∆

∂z2
= 0, (1.48)

where ωz = ∂vx
∂y
− ∂vy

∂x
is the z-component of voticity (along the magnetic field line) and

∆ = ∇ · v is the compressibility (see Roberts 2019). The wave equations contain the

fundamental speeds of MHD: the sound speed cs =
(
γp0
ρ0

)1/2
, where ρ0 and p0 refere to the

fluid density and pressure in the unperturbed state of the medium; and the Alfvén speed

vA =
(
B2

0

µρ0

)1/2
where B0 is the equilibrium field strength. The speeds cs and vA characterise

all wave phenomena described by MHD equations. Other speeds, such as the kink speed,
also play an important role, but these are expressed in terms of cs and vA.

Now we assume the perturbations as plane waves proportional to exp [i (ωt− k · r)], where
ω is the wave frequency, k = (kx, 0, kz) is the wave vector, and r = (x, y, z) is the position
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vector. In terms of plane waves, Equations (1.47) and (1.48) provide us with the dispersion
relation for Alfvén waves [

ω2 − k2zv2A
]
ωz = 0, (1.49)

and for magnetoacoustic waves, namely[
ω4 − k2

(
c2s + v2A

)
ω2 + k2k2zc

2
sv

2
A

]
∆ = 0. (1.50)

Here, k2 = k2x + k2z , kz = k cos θ, and θ is the angle that the wave vector forms with the
equilibrium magnetic field.

Now we suppose that the z-component of vorticity ωz 6= 0 so that to satisfy Equation (1.49),
ω2 = k2zv

2
A and Equation (1.50) then implies that ∆ = 0. In this case, we obtain a disturbance

that propagates with the Alfvén speed and involves no compression of the plasma. This is
the Alfvén wave. On the other hand, when ωz = 0 and ∆ 6= 0 the solution of Equation (1.50)
is

ω2 =
k2

2

[(
v2A + c2s

)
±
√

(v2A + c2s )
2 − 4v2Ac

2
s cos2 θ

]
. (1.51)

Here, minus root corresponds to the slow magnetoacustic wave and the plus root gives the
fast magnetoacustic wave. The properties of fast and slow magnetoacustic waves depend
on the relation between the sound and the Alfvén velocities. The presence of a magnetic
field in the equilibrium state of the uniform medium introduces a preferred direction in the
magnetohydrodynamic system that affects the behaviour of the phase speed (ω/k) of the
waves. In other words, a wave propagating in the direction of the equilibrium field (θ = 0)
has a different velocity from one propagating at an angle to the field so that the medium
is anisotropic. For θ = π/2 the slow phase speed is null, therefore the slow wave is unable
to propagate orthogonally to the magnetic field and neither does the Alfvén wave. On the
contrary, the fast wave reaches its maximum speed. For typical physical conditions in the
solar corona vA � cs. In this limit Equation (1.51) reduces to ω2 ≈ k2c2s cos2 θ for the slow
wave and to w2 ≈ k2v2A for the fast wave. Therefore, in the solar corona, the slow wave is
essentially an acoustic wave that is forced to travel along the magnetic field direction, and
the fast wave is an isotropic magnetic wave.

The general nature of Alfvén and magnetoacustic waves derive from the study of uniform
mediums. However, many solar plasma structures present a non-uniform character. A
strongly structured atmosphere presents different features that cannot be explained by the
analysis of uniform mediums. The simplest structured medium consists of two uniform media
with different physical parameters, that are joined at a single interface. The interaction
between the two uniform plasmas takes place at the interface throughout a new kind of
waves, called surface waves. A deep study of surface waves is out of the scope of this Thesis,
however this new type of MHD waves is crucial for the study of the damping of prominence
oscillations due to resonant absorption.

Resonant absorption

This is an adiabatic process, namely not related to any physical loss of energy, but rather
to transfer of energy from the global transverse mode of oscillation to local Alfvén modes in
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non-uniform plasmas. First studies of resonant damping of MHD surface waves are based
on solving the governing differential equation for linear motions in a single interface medium
(slab geometry) consisting of two uniform regions separated by a continuous profile (Sedláček
1971; Rae & Roberts 1981; Lee & Roberts 1986; Hollweg & Yang 1988). The governing
equation can be expressed, for example, as follows (see Section 4.5 of Roberts 2019):

d

dx

[
ρ0 (x)

(
k2zv

2
A (x)− ω2

) dux
dx

]
= ρ0 (x) k2z

(
k2zv

2
A (x)− ω2

)
ux. (1.52)

The layer of inhomogeneity that joins the two uniform regions can vary in x in terms of
density and/or of the Alfvén speed. In general, solutions of the initial value problem show
that the system has a frequency ω = ωR + iωI, where ωR is the frequency of motion and the
imaginary part ωI is related to the damping time as td = 1/ωI. For a lineal transitions of
density and Alfvén speed,

ω = kzck + i
π

4
lkz

ρ0ρe

(ρ0 + ρe)
2

v2Ae − v2A
c2k

kzck (1.53)

where ck =
√

ρ0v2A+ρev2Ae

ρ0+ρe
is the kink speed, l is the transition layer width, and the subscripts

0 and e refer to each side of the slab.

A similar problem of damping of transverse waves in prominences is discussed from the
viewpoint of a cylindrical geometry (Sakurai et al. 1991; Ruderman & Roberts 2002; Goossens
et al. 1992; Arregui et al. 2008). The damping time divided by period (P = 2π/ωR), beyond
the thin tube thin boundary approximation, can be written as (e.g. Equation (3) of Arregui
et al. 2008)

td/P = F
a

l

χ+ 1

χ− 1
, (1.54)

where χ = ρf/ρc is the filament/corona density contrast, a the radius of the flux tube, l the
thickness of the transition layer, and F is a numerical factor that depends on the variation
of the density in the transition layer. The resonant damping rate that appears in the mathe-
matical derivation should not be considered as an actual attenuation that involves some kind
of energy dissipation and so total energy is conserved, but it has to be physically understood
as the timescale in which the energy of the global mode is transferred to the localised Alfvén
waves (Soler & Terradas 2015). The damping time is inversely proportional to the width of
the transition layer so that structures with wider transition regions attenuate more rapidly,
or in other words, the efficiency of resonant absorption increases as the non-uniform layer
gets thicker. Also, the damping time decreases when the density contrast is increased.

The mode conversion takes place inside the inhomogeneous transition layer. The energy
transference is most efficient where the transverse mode frequency matches the local Alfvén
frequency, that is the resonance surface. Due to the energy conversion, the global oscillation
gradually loses its energy, and its amplitude is attenuated in time. On the other hand, the
amplitude of the Alfvén modes increases at the resonant layers where the energy conversion
takes place. The process of resonant absorption is linked with phase mixing. The energy
transport of the global kink motion towards the non-uniform boundary of the flux tube
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generates small spatial scales by phase mixing. Soler & Terradas (2015) investigated the
generation of small scales in non-uniform solar magnetic flux tubes due to phase mixing.
The process of phase mixing occurs because in transversely non-uniform to the magnetic
field direction plasmas, the Alfvén frequency is spatially dependent. Due to this fact, Alfvén
waves propagating in adjacent magnetic surfaces become more and more out of phase as
time progresses. As a consequence of the mixing of phases, a continuous decrease of the
spatial scale of the wave appears across the magnetic field.

1.4 Gravitational instabilities

A question that immediately arises regarding solar prominences is how they can be sus-
pended against gravity above the photosphere for long periods. This issue has lead to the
development of theoretical prominence models that include magnetic dips where the gravity
force projected along the field lines is zero. One analytical example of such equilibrium
configurations is the previously explained H&A model. Other examples were developed by
Fiedler & Hood (1992) and de Bruyne & Hood (1993). Later, equilibrium models in flux rope
configurations were obtained by Low & Zhang (2004), Petrie et al. (2007), and Blokland &
Keppens (2011). More recently, numerical equilibria have been achieved through relaxation
processes by solving the time dependent MHD equations in 2D (Hillier & van Ballegooijen
2013; Terradas et al. 2013; Luna et al. 2016b). 3D stable magnetic configurations with dips
have been numerically investigated by Terradas et al. (2015a, 2016) and Adrover-González &
Terradas (2020) (see Chapter 2 of the present Thesis). In the latter three works the presence
of dips was not crucial for the stability of the prominence. However, it seems that there
is the common idea in the solar community that threads/blobs automatically fall along the
field lines because of gravity force and that if threads are suspended it is because of magnetic
dips. However, this is not completely true because the line-tying effect at the photosphere
can produce a pressure increment along the magnetic field lines that is able to sustain extra
mass. This has also been investigated numerically in some detail in a magnetic arcade con-
figuration by Kohutova & Verwichte (2017b) (see also the former numerical experiments of
Mackay & Galsgaard 2001, in a vertical magnetic field).

One characteristic of the Hood & Anzer (1990) model is the fact that the equilibrium is
in general unstable to lateral displacements, meaning that the dense and cold part of the
prominence body tends to fall along magnetic field lines essentially due to the gravity force
(see also the numerical experiments of Kohutova & Verwichte 2017b). This was demonstrated
in the stability analysis of de Bruyne & Hood (1993) who found that the model is only stable
for sufficiently low prominences. Therefore, the presence of magnetic dips in the configuration
is not a warranty for stability. However, Longbottom & Hood (1994), who included a more
realistic magnetic shear angle that changes with height into the H&A model, found that a
strong shear gradient in the magnetic field near the base of the filament provides a stabilizing
effect on prominences with realistic heights. The instability of the H&A model is going to be
addressed in Chapter 3. On the contrary, in the magnetic configuration studied numerically
in Terradas et al. (2013) the gravitational instability reported in the Hood & Anzer (1990)
model did clearly not take place. At first glance, this instability may seem to be directly
related to magnetic buoyancy, a phenomenon that has been investigated in great detail by
Parker (1979). But indeed it turns out that it is not related to this kind of process since
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it also appears in the absence of fluctuations in the magnetic field, hence, the instability
is purely gravitational. This is the main motivation of Chapter 4, namely to understand
the reasons for gravitational instability in a global sense, and not necessarily under the
presence of magnetic dips. This effect, the role of magnetic dips on the stability properties,
is investigated in detail in Chapter 5 of this Thesis.
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Numerical simulations
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Chapter 2

3D numerical simulations of
oscillations in solar prominences 1

2.1 Introduction

Solar prominence (or filament) oscillations have been the subject of study for decades. The
first detection of a winking filament dates back to 1930 (see Hyder 1966). Since then,
diverse researches have aimed at establishing theoretical models that explain the examined
oscillations. Observations together with the theoretical models have allowed us to expand
our knowledge about solar prominences and have facilitated, for example, the estimation
of physical parameters that are difficult to measure, such as the minimum magnetic field
strength that supports these plasma structures, or the radius of the curvature of magnetic
dips (R) (Ballester 2014; Luna et al. 2014).

The observational and theoretical studies of oscillations in filaments are corroborated by
numerical simulations. Single 1D threads formed in magnetic flux tubes with a concave up-
wards shape where plasma oscillates have been studied by several authors. Luna & Karpen
(2012) studied large amplitude longitudinal oscillations in 47 independent threads. They
found that the main restoring force is the projected gravity along the magnetic field, and
that the periodicity of longitudinal oscillations depends on the radius of the curvature of
the magnetic dip following the pendulum model (see Equation (1.2)). Zhang et al. (2012)
used 1D radiative hydrodynamic simulations that almost reproduced the periodicity of lon-
gitudinal oscillations in threads with magnetic dips observed on February 8th 2007. Zhang
et al. (2013) carried out a parametric survey to investigate the behaviour of longitudinal
oscillations for different filament dimensions and triggering mechanisms. They found that
the swaying motion is not determined by the disturbance type and reasserted that the lon-
gitudinal oscillations follow the pendulum model. They also found that in addition to the
gravity force, the pressure gradient contributes to the restoring force for short threads.

In addition to 1D simulations, 2D numerical studies of oscillations in prominences have
been carried out too. Some of these works focussed on studying the evolution of cold and

1This chapter is based on: Adrover-González, A., Terradas, J.; 2020, 3D numerical simulations of oscil-
lations in solar prominences, Astronomy and Astrophysics, 633, A113.
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dense plasma structures embedded in an isothermal stratified atmosphere permeated by
a dipped arcade magnetic configuration. Based on this method, Terradas et al. (2013)
analysed the evolution of the density distribution together with other variables such as the
involved forces or the velocity field during the relaxation process of the non-equilibrium initial
configuration. Then, when the prominence was in equilibrium, they studied the behaviour
of induced vertical, longitudinal, and Alfvén waves solving the linearised MHD equations.
For validating purposes, Luna et al. (2016b) reproduced non-linear numerical simulations of
large amplitude longitudinal oscillations in a nearly equilibrium configuration. They found
that the pendulum model is robust even in the range of short prominence field lines. In
addition to this type of models, Kraśkiewicz et al. (2016), based on the Pikelner model,
studied the dynamics of a prominence perturbed by a pressure disturbance, and Zhang et al.
(2019) analysed 2D non-adiabatic MHD simulations of longitudinal oscillations.

To reproduce more realistic situations, more complex 3D MHD numerical simulations are
required, but so far, only few 3D studies have analysed prominence oscillations. Terradas
et al. (2016) and Zhou et al. (2018) carried out simulations of prominences embedded in
magnetic flux ropes. While Terradas et al. (2016) focussed their study on the evolution of
the density profile for different resolutions and magnetic twist during the relaxation process
and in the development of Kelvin-Helmholtz instabilities, Zhou et al. (2018) investigated the
dynamics of longitudinal, vertical, and horizontal transverse oscillations triggered by velocity
disturbances. The magnetic flux rope geometry is the most widely accepted filament model
because it aligns the longitudinal filament axis along the magnetic field lines. However, the
magnetic arcade configuration with a curtain-like prominence has not yet been used in 3D
numerical simulations of oscillations in prominences.

The numerical studies reviewed in this section made an effort to clarify the nature of the
attenuation. Luna & Karpen (2012) proposed that the main damping mechanism for their
model is the accretion of mass onto the threads during prominence formation. Zhang et al.
(2012) suggested that the non-adiabatic terms are responsible for the attenuation. They
analysed the importance of radiative loss and thermal conduction and concluded that in
their thread model, the first term is responsible for the damping time (td). Zhang et al.
(2019) studied the non-adiabatic effects in the attenuation of longitudinal oscillations in de-
tail and found that, on the one hand, these processes are the primary agent that dissipates
the oscillations, but on the other hand, wave leakage plays an important role in dissipating
the kinetic energy too. Terradas et al. (2016) have shown in their model that the atten-
uation of the vertical transverse oscillations is produced by resonant absorption, although
Kelvin-Helmholtz instabilities could also provide a mechanism to attenuate the prominences.
Despite these attempts to establish attenuation mechanisms, numerical studies caution that
part of the damping might be caused by computational effects such as numerical viscosity or
dissipation. The numerical damping complicates the study of the attenuation mechanisms,
and for this reason, many studies neglect the attenuation problem. While for longitudi-
nal oscillations the non-adiabatic processes have been analysed in many studies, resonant
absorption in 3D simulations of transverse oscillations requires a deeper study.

Different models have been used to compare analytical expressions to the transverse sim-
ulated periods. For example, Terradas et al. (2013) and Zhou et al. (2018), used in their
simulations of vertical oscillations the slab and string model of Joarder & Roberts (1992b),
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respectively, and obtained large differences between the analytical and the numerical results.
Nevertheless, both studies obtained better correlations with the results of Dı́az et al. (2001)
even though they used a 2D model.

The main aim of this chapter is to perform a 3D numerical study of oscillations in a curtain-
shaped prominence permeated by a magnetic arcade that supports the dense and cool plasma
against gravity. The magnetic configuration is based on the model proposed by Kippenhahn
& Schlüter (1957). Unlike other works, in which the prominence mass is suspended above the
photosphere, we anchored the plasma to the bottom boundary of the computational domain,
which represents the photosphere in our model. Large-scale filament properties show that
the cool plasma of many prominences joins the chromosphere, and possibly the photosphere,
through the filament barbs (Parenti 2014). Extensive filaments with a few points of contact
with the surface (Hedgerow prominences) are the most common type (Zirin 1998; Engvold
2015). In addition, Shen et al. (2014b) observed transverse oscillations above the solar limb
and suggested that the body oscillated as a rigid body with one end anchored on the Sun.
However, this structure has not been investigated numerically so far. For these reasons, we
considered that our model is a good approximation to study this rich prominence type. The
aim is to compute the period and the damping time for vertical and longitudinal/transverse
horizontal motions triggered by velocity disturbances for different mass distributions. The
primary initial configuration is described in Section 2.2 and the numerical aspects are ex-
plained in Section 2.3. The computed results are displayed in Section 2.4. Conclusions and
discussion are summarised in Section 2.5.

2.2 Initial reference set up

To numerically study the oscillations in prominences, an isothermal stratified background
atmosphere has been configured as in Terradas et al. (2015a). The coronal density profile is
expressed as ρc = ρ0 exp(−z/Λ), where ρ0 is the density of the reference level located at the
bottom boundary of the computational box z = 0. Unlike the works of Zhou et al. (2018)
and Zhang et al. (2019), who inserted a temperature transition between the photosphere and
the corona, in our model we consider that the level z = 0 represents the photosphere and
that it is connected to the corona through the magnetic field (Terradas et al. 2013, 2015a).

The pressure scale height is Λ = c2s0/γg and the velocities are normalised to the sound speed
cs0 =

√
γp0/ρ0 = 166 km s−1 for a coronal temperature of 1 MK. The gravity acceleration is

g = 0.274 km s−2, the adiabatic index is γ = 5/3, and the reference length has been chosen
to be H = 10 Mm. The plasma is permeated by an arch-shaped magnetic field, composed
of the superposition of two force-free magnetic arcades, see Section 1.3.3. This quadrupolar
configuration adds a magnetic dip to the structure in which the depth of the dip varies with
height. In Figure 1.7 some magnetic field lines are plotted in the xz-plane. At x = 0, the
radius of the curvature takes low positive values in the bottom part of the structure and
grows until z = 1.55H, where the field line becomes flat. From this point, the dip is lost and
the curvature becomes concave downwards. To avoid high values of the plasma-β parameter
(β = 2c2s/γv

2
A), which affect the character of the modes, the point zX has been located out of

the numerical domain as in Luna et al. (2016b). Unlike Terradas et al. (2015a), the magnetic
configuration has no shear and the magnetic field is invariant in the y-direction.
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Figure 2.1: Density profile together with some magnetic field lines at t = 0. In this plot
n = 4, wx = 0.3H, wy = 2.2H, wz = 2.6H, and ρp0 = 80 ρ0. Density isocontours are
normalised to ρ0.

An increase in shear produces an increase in the horizontal component of the magnetic field,
leading to a higher magnetic tension. It also changes the depth and width of the dips so that
the magnetic support can be different between sheared and non-sheared structures. The
study of oscillations in sheared arcades is beyond the scope of this chapter. To obtain the
previously described magnetic configuration, the magnetic vector potential is

Ax = 0,

Ay = B0

k1
cos(k1x) exp[−l1(z − z0)]− B0

k2
sin(k2x) exp[−l2(z − z0)],

Az = 0.

(2.1)

For the reference simulation we took B0 = 10 G. We chose k1 = π/2L and k2 = 3k1 to
be the parameters related to the lateral extension of the arcades, 2L is the width of the
whole structure, l1 and l2 are measures of vertical magnetic scale height, and z0 = −0.2H
is equal to zX . The relation l1/k1 is related to the shear of the magnetic field lines. In this
work the shear is null, implying that l1/k1 = 1, and the value for l2 is set by the constraint
k21 − l21 = k22 − l22. The magnetic field is B = ∇×A and it is given by Equation (1.38).

The mass deposition is artificial and instantaneous because we did not study the prominence
formation process here (see Mackay et al. 2010, for a summary of prominence formation
models). The deposition maintains the gas pressure at the same level. The density profile
consists of a curtain-shaped mass distribution expressed as

ρp = ρp0 exp [−2((x/wx)
n + (y/wy)

n + (z/wz)
n] . (2.2)

The term n determines the width of the prominence-corona transition region (PCTR) (in
this work, n = 4 by default). The width, the length, and the height of the curtain are
chosen to be wx = 0.3H, wy = 2.2H, and wz = 2.6H, respectively, and the density contrast
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between the corona and the core of the prominence has a value of ρp0/ρ0 = 80. With these
characteristics and by considering that the prominence density is 5.2 × 10−14 g cm−3, the
total mass of the filament is 1.6 × 1014 g. The feet of the prominence are anchored to the
base of the domain box, which represents the base of the corona, therefore the motion is
subjected to this condition. The density profile is located centred in the computational
box and the filament spine is aligned with the y-coordinate, hence, the magnetic field lines
cross the prominence transversely. This configuration is not the most widely used one by
authors who accept that in most cases the dense plasma is almost aligned along the magnetic
field lines. Observations demonstrate that the angle between the magnetic field lines and
the prominence spine is quite small and has a maximum at around 25º (Tandberg-Hanssen
1995). However, for simplicity, we decided to use the present configuration as a preliminary
step before sheared arcades are analysed. In Figure 2.1 the described density profile is
represented at t = 0 including some selected magnetic field lines.

2.3 Numerical aspects

The ideal MHD equations we solved are given by Equations (1.10)-(1.13). The code we
used to solve this equations is the Pencil Code2 which is a publicly available model that
uses sixth-order finite-difference schemes. High-order derivative schemes, such as the one
used in the Pencil Code, reduce the numerical dissipation, but in order to obtain consistency
in numerical solutions, the code needs to add small amounts of diffusion to damp out the
modes near the Nyquist frequency (Brandenburg 2003). For this reason we have introduced a
simplified second-order hyperviscosity term (see Haugen & Brandenburg 2004) and a shock
viscosity term in the equation of motion. We did not use artificial viscosity in the other
equations. The hyperviscosity is proportional to a diffusion coefficient that should be as
small as possible but sufficiently large to reduce the wiggles in the results. In addition, to
avoid wiggles, we used fifth-order upwind derivatives for the advection terms v· ∇ ln ρ and
v· ∇s. To calculate the time step we applied a third-order Runge-Kutta scheme.

The Pencil Code uses three layers of ghost points to implement boundary conditions. In
this work, closed boundary conditions were applied (see Terradas et al. 2016), which means
that line-tying conditions were imposed at all boundaries of the computational box. A line-
tying boundary condition sets the three components of the velocity equal to zero, the normal
component of the magnetic field is kept constant, and spatial derivatives of the density and
the entropy variables are equal to null. This condition imposed at the bottom boundary
is crucial to mimic the purely reflecting conditions of the photosphere and to obtain the
magnetic support. Since the Pencil Code uses the magnetic vector potential instead of the
magnetic field, to fix the magnetic component perpendicular to the boundary, we applied to
the three components of A the condition of antisymmetry relative to the boundary value that
eliminates the second derivative of A. The numerical domain is a box of 180×144×90 mesh
points in which the dimensions of the box were chosen to be 100 Mm in the x-direction,
80 Mm in the y-direction, and 50 Mm in the vertical component. Thus, we were able to
impose an equidistant grid with a grid size of 0.556 Mm.

2http://pencil-code.nordita.org/
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2.4 Results

2.4.1 Relaxation process

As was already mentioned in Section 2.2, the mass deposition is instantaneous. The promi-
nence plasma breaks the initial equilibrium and then starts to oscillate vertically. Initially,
the force-free magnetic condition implies an equilibrium between the magnetic pressure and
the magnetic tension. Additionally, the gas pressure force counteracts the gravitational
force, thus, the entire system is stable. However, when the prominence is introduced, the
system loses its balance and the gravity force pushes the structure downwards. The top
left panel of Figure 2.2 shows the vertical component of the forces at x = 0 and y = 0 as
a function of height at t = 0, once the prominence mass is introduced. It shows that, at
the beginning of the simulation, the magnetic tension (grey curve) counteracts the magnetic
pressure (dashed curve), but gravity (solid line), in the presence of the prominence body,
exerts a force pointing downwards and so the pressure gradient (dot-dashed curve) does not
counteract. Immediately, the plasma deforms the field lines, increasing the depth of the
magnetic dips.

Figure 2.2: Time evolution of the vertical component of the forces at x = 0 and y = 0 as a
function of height. The forces are magnetic tension (grey curve), magnetic pressure (dashed
curve), gravity (solid curve), pressure gradient (dot-dashed curve). Forces are normalised to
ρ0 c

2
s0/H.

In the top panel of Figure 2.3 we show the final state of the field lines (blue solid curves)
compared with the initial state (black dashed curves). This distortion implies an increase in
the z-component of the magnetic tension (and to a lesser extent, the magnetic pressure) in
such a way that it counteracts the movement, restoring the prominence upwards. After an
evolution of approximately 80 min, the Lorentz force almost balances the gravity force (see
the time evolution of the forces in Figure 2.2).

The total mass of the system remains practically constant although there is a spatial redistri-
bution. The density distribution of the final equilibrium state at t = 90 min is shown in the
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(a)

(b)

Figure 2.3: Density distribution of the final equilibrium state at t = 90 min. Top panel:
Density isocontours and magnetic field lines in the plane y = 0. Bottom panel: Density
isocontours in the plane x = 0. Dashed lines correspond to the initial reference set-up, and
solid lines show the final equilibrium state at t = 90 min. Density is normalised to ρ0.

Figure 2.4: Time evolution of the density, vz and the magnetic field lines for the relaxation
process of the reference simulation in the xz-plane at y = 0. The dashed lines represent the
initial state. vz is normalised to cs0 and density to ρ0.
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Figure 2.5: Time evolution of the density and vz for the relaxation process of the reference
simulation in the yz-plane at x = 0. The dashed lines represent the initial state. vz is
normalised to cs0 and density to ρ0.
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Figure 2.6: Time evolution of the z-component of the centre of mass for n = 2 (red), n = 4
(green) and n = 6 (blue). The density average has been computed for a delimited region
(x ∈ [−0.5H, 0.5H], y ∈ [−3H, 3H], z ∈ [0, 3.5H]).

top and the bottom panels of Figure 2.3. In the top panel we observe that the prominence
widens slightly in the x-direction near its base, where the plasma gathers. To compensate
for the accumulation of mass at the base, the filament narrows at the top and reduces its
height. In the bottom panel we find that in the y-direction the redistribution of mass is
more noticeable, especially in the inner layers of the prominence, where as a result of the
accumulation of plasma, the isocontour ρ = 80 ρ0 expands. For a more detailed tracking of
the density redistribution during the relaxation process of the reference simulation, we show
in Figures 2.4 and 2.5 the temporal evolution of the density and the vertical component of
the velocity vz in the xz and yz-planes, respectively. Figure 2.4 also shows the evolution of
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Figure 2.7: vz as a function of time for the relaxation process at a fixed point (0, 0, 1.3H).
The dots represent the values obtained from the numerical simulation and the continuous
grey curve is the fitting result based on Equation (2.3).

field lines of the magnetic arcade.

The evolution of the z-component of the centre of mass is represented in Figure 2.6. To
suppress interactions with the background, the centroid was averaged from a delimited box
that only included the prominence body. The green dotted line corresponds to the reference
simulation, and, initially, the centre of mass is located approximately at z = 1.1H, however,
it rapidly drops. After two cycles, the prominence oscillates around a new equilibrium height
located at z = 1.01H. This change in height occurs due to the mass redistribution.

The evolution of the vertical velocity at the point x = 0, y = 0, z = 1.3H is represented
in Figure 2.7 (dotted line). At the beginning of the simulation, the system is completely
at rest, but the prominence body immediately drops, increasing the z-component of the
velocity (vz), which rapidly reaches its maximum value. Approximately at t = 3.5 min, the
speed reaches positive values, which indicates that the prominence begins to ascend towards
its original position. This periodic motion is repeated approximately sixteen times for about
90 min. Figure 2.7 shows that the amplitude of the oscillations decreases with time. The
observations indicate that the movement describes an attenuated oscillation. We can fit an
exponentially decayed sine curve with respect to time, expressed as

f = f0 sin(ω t) exp(−t/td) , (2.3)

where f0 is the signal amplitude, ω the frequency, and td is the damping time. For the
reference simulation we obtained a period of P = 2π/ω = 5.6 min, a damping time of
td = 25.1 min, and a velocity amplitude of f0 = −0.082 cs0. We represent the fitted curve in
Figure 2.7 as a solid line.

As in Terradas et al. (2015a), we represent the evolution of vz in a yz-slice at x = 0 (see
Figure 2.8). The same result that has been shown in Figure 2.7 can be seen in the top panel
of Figure 2.8, namely, that at the beginning of the simulation, vz takes a negative value at
the prominence body, describing a downwards movement. Nevertheless, the global evolution
is more complex, and the system also develops vertical shear motions at the lateral edges of
the prominence. In the first steps of the simulation, the system shows a single wide lateral
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strip, but in the bottom panel of Figure 2.8 we observe that at t = 8.4 min the number
of bands with opposite speed has grown and their width has narrowed. This is clearer in
Figure 2.9, where we plot the time evolution of vz as a function of the y-coordinate at x = 0
and z = 1.3H. At t = 2.4 min (solid line) and t = 8.4 min (dashed line), we observe the same
pattern as in Figure 2.8, and at t = 14.4 min (dotted line), we obtain that these shear motions
remain localised at the PCTR and that the typical spatial scales have decreased with time.
We also clearly see the same velocity distribution in the top middle panel of Figure 2.5. This
velocity pattern is generated as a result of resonant absorption, and it is the origin of part
of the attenuation. Terradas et al. (2015a) also found this positive/negative velocity pattern
in vz (see Figure 3 of their work) and they associated this behaviour with the process of
mode conversion and phase mixing. Our results agree with the resonant absorption process
because the energy conversion takes place at the inhomogeneous layer of the prominence,
that is, at the sides of the structure in the transverse direction with respect to the field lines
and the direction of motion; in this case, the y-edges. This process is also characterised by
the decrease of the typical spatial scales of the shear stripes with time. It is important to
mention that the velocity amplitude of the positive/negative bands attenuates with time as
Figure 2.5 shows.

The studies of the resonant absorption as a mechanism for the damping of filament oscilla-
tions are usually based on simple models of magnetic flux tubes (see, e.g. Arregui et al. 2008;
Soler et al. 2009b; Antolin et al. 2015). In these works, the damping time of the fast kink
waves caused by the resonant absorption process depends on the width of the PCTR. To
study the dependence of the attenuation on the PCTR, the relaxation process was simulated
by modifying the density profile but keeping the total mass constant, so that for n = 2, we
have ρp0 = 144 ρ0, and for n = 6, we have ρp0 = 63.7 ρ0. The prominence with the term
n = 6 has the steepest profile, whereas the one with n = 2 has the least steep one, so that
when n increases, the density slope is stronger and leads to thinner transitions between the
core and the corona. In Figure 2.6 the evolution of the centre of mass is plotted for the
three different cases. The evolution of the three curves are similar to each other, but we
can clearly see that for n = 6 (blue curve), the evolution has a softer attenuation and for
n = 2 (red curve) we obtain the strongest damping. In agreement with Arregui et al. (2008),
we obtain that the wider the PCTR, the stronger the attenuation. We are interested in
estimating the ratio of the damping time to the period. From the fitted curve of Figure 2.7
we computed td from the vz series at a localised point. However, in complex configurations
we can detect different attenuation times at distinct points. For this reason, in Figure 2.6 we
calculated the time evolution of the spatially averaged density. For the relaxation process,
to calculate the damping time of the three signals of Figure 2.6, we first applied an empirical
mode decomposition (see Terradas et al. 2004) to decompose the signal and select the first
intrinsic mode function. In this way, we subtracted the trend of the centre of mass drop.
After this, we obtained a damping per period of td/P = 1.9 for n = 2, td/P = 3.7 for n = 4,
and td/P = 5.9 for n = 6.

To extend the study of the relaxation process, we studied its evolution for a range of values
of the filament width, the density contrast, and the magnetic field strength. The results are
shown in Figure 2.10. First, we investigated the dependence of the period on wx. We varied
the width of the prominence from 0.25H to 0.5H, while we used the reference values for
the other parameters. When the width is doubled the total mass is multiplied by a factor
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Figure 2.8: Time evolution of the density, vz and the magnetic field lines for the relaxation
process. vz is represented in the yz-plane at x = 0 as a 2D slice. The initial configuration
for this case is shown in Figure 2.1. vz is normalised to cs0 and density to ρ0.

Figure 2.9: vz as a function of y (x = 0, z = 1.3H ) at t = 2.4 min (solid line), t = 8.4 min
(dashed line) and t = 14.4 min (dotted line).

of two. To compute the periodicity of the oscillations, we fitted the results for the different
time series of vz with Equation (2.3) following the same procedure as used in the reference
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process. The curtain with the widest width, and therefore with the greatest total mass,
shows a higher initial z-velocity amplitude and a greater fall of the centroid into the new
equilibrium point. The top panel of Figure 2.10 indicates that the oscillation period varies
with the prominence width. We obtained that the wider the prominence, the longer the
period.
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Figure 2.10: Scatter plots of the period of oscillation P during the relaxation process as a
function of wx (top panel), ρp0 (middle panel) and B0 (bottom panel). The values of P were
obtained from the fitted curve based on Equation (2.3) for the evolution of vz at a fixed
point (0, 0, 1.3H).
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We also studied the dependence of the periodicity on the prominence mass by varying ρp0
and keeping the reference values of the other variables. Now, the total mass of the parametric
survey ranges from 7.9 × 1013 g to 1.8 × 1014 g. The highest mass prominence suffers the
greatest drop into the new equilibrium point and has the largest z-velocity amplitude. In
the middle panel of Figure 2.10 we can see an increase in the period with total mass. In the
top and middle panels we observe an almost lineal dependence of the period on the other
two parameters. The parameter values were chosen in a way that the curtain with widths
of 0.25H and 0.35H would have the same total mass as the curtain with ρp0 = 66.67 ρ0 and
ρp0 = 93.33 ρ0, respectively. Figure 2.10 shows that configurations with the same total mass
have practically the same oscillation period.

The last parameter we modified is the magnetic field strength. We varied B0 so that the
maximum Alfvén speed ranges from 13.3 cs0 to 22.1 cs0. Terradas et al. (2015a) analysed the
dependence of the relaxation process for a suspended prominence on β. They found that for
low β the magnetic field of their configuration is able to keep the prominence suspended.
However, for a low magnetic field strength, the dense plasma falls down and finally forms a
hedgerow or curtain-shaped prominence. These downward flows, caused by Rayleigh-Taylor
instabilities, complicate the dynamics of the system (see also the simulations by, e.g. Hillier
et al. 2012a,b; Khomenko et al. 2014b; Popescu Braileanu et al. 2021a,b). Nevertheless,
we avoided these flows by anchoring the density enhancement to the computational box.
We obtained that for a weak magnetic field, the magnetic tension can hardly maintain the
structure so that the material oscillates with a larger amplitude and at a lower equilibrium
point. The top panel of Figure 2.10 shows that the period decreases with the magnetic
field strength. These results agree with Terradas et al. (2013), who found in their numerical
study that for vertical oscillations, the period increases with the total mass and decreases
for weaker magnetic field strengths. They also found that the period decreases slightly with
the total length of the magnetic field line that crosses the prominence centre.

We analysed the attenuation of the vertical oscillations for the different cases. From the
vz series we obtained that the damping per period td/P does not vary significantly with
width and ranges from 4.4 to 5.2. However, we found that the attenuation depends strongly
on ρp0 and B0. td/P decreases with ρp0 from 7.9 to 3.7 and increases with B0 from 2.2 to
7.6. Then instead of analysing the vz series, we study the centroid, as has been previously
explained, and found that no important changes in periodicity or attenuation are observed.
This means that, as in Terradas et al. (2008a), the global mode is dominant everywhere
inside the prominence and that the damping time is basically the same everywhere.

2.4.2 Longitudinal oscillations

When the dense plasma enters an almost stationary state, we introduce a velocity pertur-
bation in the x-direction in the prominence body to trigger longitudinal oscillations. The
perturbation is

vxp = vx0 exp
[
−2 ((x/wvx)

4 + (y/wvy)
4 + ((z − zv0)/wvz)4)

]
. (2.4)

We refer to longitudinal oscillations as the movement along the magnetic field lines. The spa-
tial distribution of the velocity disturbance was defined in such a way that it produces a global
motion of the prominence but maintains the filament foot fixed to the photosphere. The
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disturbance has a maximum speed of vx0 = 0.05 cs0 located at the centre of the prominence
at a height of zv0 = 1.3H, and its shape fits the density profile (wvx = 0.3H, wvy = 2.2H,
and wvz = 1.1H). In the top panel of Figure 2.11 the evolution of the x-component of the
velocity (vx) at the xz-slice passing through y = 0 at the new equilibrium instant t = 0 is
plotted with some selected density contours and some magnetic field lines.

(a)

(b)

(c)

Figure 2.11: Time evolution of vx at the xz-plane passing through y = 0 for the evolution
of longitudinal oscillations. The ten blue curves correspond to some selected magnetic field
lines. The orange-coloured isocontours represent the density profile. The initial parameters
are the same as those in Figure 2.1. vx is normalised to cs0 and density to ρ0.

Initially, the prominence moves in the direction given by the disturbance. The displacement
reaches a different maximum amplitude depending on the perturbation profile. The greatest
displacement occurs in the centre of the structure where we located the maximum speed.
After the oscillation reaches the maximum displacement, the backward movement restores
the motion at a different instant for each height.

The simulation shows that the restoring movement occurs earlier in the lower part of the
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Figure 2.12: Time evolution of the density distribution (solid black line) along a selected
magnetic field line. The field footpoint is located at x = −3.885H. The dashed black line
is the half of the field line and the dashed red line is the position of the centre of mass. The
blue vector describes vx of the centre of mass.
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Figure 2.13: Evolution of the centre of mass along eleven selected field lines in the case of
longitudinal oscillations. Every dotted curve is shifted by a distance of 0.1H from the curve
below.

structure than in the upper part. This fact causes the motion to describe a serpentine
movement that can be seen in the middle and bottom panels of Figure 2.11. We also observe
that vx displays different velocity stripes of opposite sign aligned with the magnetic field
lines that cross the prominence body. These positive/negative bands indicate that the body
oscillates out of phase. On the whole, the centroid oscillates with a period of P = 37 min, a
damping time of td = 47.6 min, and a displacement of f0 = 0.093H.

To study the dependence of the period on the height and the driving mechanism of the
longitudinal oscillations, we compared the results with the pendulum model. Based on Luna
et al. (2016b), we selected eleven magnetic field lines located at the central xz-plane of
our numerical domain. The position of the centre of mass along each magnetic line (scm)
was calculated. The left foot position of the selected field lines ranges from x = −4H to
x = −3.65H with an increase of 0.035H. The height of the selected lines at the centre of the
prominence varies approximately from z = 0.3H to z = 1.4H for the reference simulation.
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Figure 2.14: Scatter plot of the periods of oscillations P as a functions of the radius of
curvature R of the magnetic dips. Each coloured point corresponds to the period obtained
from the curves of Figure 2.13 with the same colour. The black solid curve represents the
pendulum model based on Equation (1.2).

At these heights all the selected field lines are concave upwards. An overview of the motion
along one of the field lines is shown in Figure 2.12, where we display the evolution of the
density profile along a magnetic field line. The field footpoint is located at x = −3.885H.
We took this footpoint to have a field line that crosses the prominence body through the
centre of mass of the equilibrium state, approximately at z = 1.1H. In Figure 2.12 s is the
coordinate along the tube, starting from the left foot. The red dashed vertical line represents
the evolution of the centre of mass (black dashed line displays the centre of mass at t = 0),
and the blue arrow provides the horizontal component of the velocity vx at the centre of
mass. We see how the prominence oscillates around its original position with a period of
approximately 28 min. In Figure 2.13 we show the evolution of the centroid position for the
eleven selected lines. Actually, all the dotted lines oscillate around scm = 0, but, for a better
visualization, each curve has been displaced from its original position. We calculated the
oscillation periods from the time evolution of scm of each selected field line and represent
them in Figure 2.14 as a function of the radius of the field line curvature. To calculate R
we ignored its changes during the evolution of the oscillations, and we averaged the different
values of the radius along a distance of 0.25H from the prominence centre. Figure 2.14
shows that the numerical results for the reference simulation agree with the theoretical
model expressed by Equation (1.2) (solid line), at least for the reference simulation.

In order to perform a parametric study, we introduced a vx disturbance in each of the different
stationary states obtained in Section 2.4.1, and analysed the periodicity of longitudinal
oscillations as a function of wx, ρp0, and B0. In Figure 2.15 we show the scatter plots of
the oscillation periods as a function of R for the different events. Top, middle, and bottom
panels correspond to simulations of different wx, ρp0 and B0, respectively. As we showed in
Section 2.4.1, the structures with a thinner density distribution, a lower density contrast,
and a greater magnetic field strength suffer a smaller fall of their centre of mass during the
relaxation process. Consequently, the prominence mass deforms the magnetic field lines less
strongly, so the radius of each field line is longer. As a result, in Figure 2.15 we observe that
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Figure 2.15: Scatter plots of the periods of oscillation in the case of longitudinal oscillations
as a function of the radius of curvature of the field lines. The top panel represents the
different cases as a function of wx, the middle panel as a function of ρp0 and the bottom
panel as a function of B0. The filled circles correspond to the reference simulation. Solid
line represents Equation (1.2).

the dotted lines for wx = 0.25H (top panel), ρp0 = 40 ρ0 (middle panel), and B0 = 12.5 G
(bottom panel) reach longer radii for field lines with the same footpoint. In the top panel
of Figure 2.15 we show that the period increases with the prominence width. As a result,
the computed results become different from those of the pendulum model. This result
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agrees with Zhang et al. (2013). They reported a numerical study of a parametric survey of
longitudinal oscillations and found that P increases slightly with the width of the thread.
The authors proposed that the dependence of the period on the prominence width arises
because in shorter threads the gas pressure gradient increases, contributing to the restoring
force and shortening the periodicity. In the middle panel of Figure 2.15 we also show that
the oscillation period increases with the density contrast of the structure. In agreement with
this result, Terradas et al. (2013) found that higher mass prominences have longer periods
than low-mass prominences. They proposed that the cause of the increase in periodicity is
the decrement of the sound speed with mass. In contrast, in the bottom panel of Figure 2.15
the dispersion in the scatter plot is small, and this means that there is no dependence of the
period on the magnetic field. In a low-beta regime, longitudinal oscillations are associated
with the slow oscillatory modes whose characteristic speed is essentially cs0. The period
therefore does not change significantly with B0. In the top and bottom panels of Figure 2.15
we also show that the differences obtained with respect to the reference simulation and
therefore with the pendulum model are greater for larger radii. These results indicate that
in addition to the curvature radius, the prominence width and the density contrast also
modify the period of the longitudinal oscillations. This means that the pendulum model is
only a first approximation of longitudinal oscillations. This result agrees with Luna et al.
(2012a). They determined that for larger radii the pressure force contributes to the restoring
force so that the pressure-driven term introduces a correction into the pendulum model. In
addition, the discrepancies regarding the pendulum model could be caused by the calculation
of the radii of the magnetic field line curvature. R is not uniform along the streamline. The
distance along the field lines we used to calculate the averaged radii can modify the results
considerably. Furthermore, in this research, the variations in time that R suffers due to the
residual oscillations of the relaxation process were ignored.

To estimate the damping time per period, we computed these two parameters from the evo-
lution of the x-component of the centroid. We obtained that td/P decreases slightly with
ρp0 and B0, from 1.7 to 1.2 and from 1.8 to 1.1, respectively. td/P does not vary signifi-
cantly with wx, whose values range between 1.2 and 1.5 (these results do not change if we
calculate the damping from the vx series). The values of td/P are much lower for longitudi-
nal oscillations than for the relaxation process. This significant damping in contrast to the
transverse motion was also observed in the simulations of Luna et al. (2016b), who associated
the damping mechanism for longitudinal motions with a numerical viscosity that cancels the
motion by stress. The variations of td/P along with ρp0 and B0 could be understood by
the correlation between the attenuation and the oscillation amplitude. For the same speed
disturbance, the higher the density, the greater the inserted kinetic energy, and therefore the
greater the oscillation amplitude. From the simulations we also obtained a slight increase
in amplitude with magnetic force strength and so the variation of the attenuation, but the
amplitude does not change with respect to wx. Another mechanism that can explain the
attenuation of longitudinal oscillations is wave leakage. Zhang et al. (2019) found in a 2D
non-adiabatic filament simulation that when the ratio of gravity to Lorentz force is close to
unity, longitudinal oscillations deform the magnetic field, generating the subsequent trans-
verse waves which propagate away from the filament body. In our model we did not find
significant deformation of the field lines and the system does not develop waves perpendicu-
lar to the magnetic lines (not shown here). This means that no wave leakage is observed in
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the simulations. This is probably the case due to the low β regime considered in this work.

2.4.3 Horizontal transverse oscillation

To trigger horizontal transverse oscillations, we induced a velocity disturbance pointing in
the y-direction. The spatial distribution of the velocity perturbation is the same as the one
introduced in Section 2.4.2 for longitudinal oscillations, expressed by Equation (2.4). In this
case, the maximum speed located at the centre of the prominence at a height of z = 1.3H is
vy0 = 0.2 cs0. In the top panel of Figure 2.16 we show an yz-slice of the y-component of the
velocity (vy) passing through the central plane at t = 0 together with some contours of the
density profile. The plasma motion is somewhat complex. Initially, the inserted disturbance
pushes the curtain, which is anchored at the base, tilting it towards the imposed direction.
The displacement amplitude is greater in the internal parts of the filament where the velocity
disturbance is stronger. Immediately, the plasma of the corona reacts to the movement in
the opposite direction and tends to fill the displaced plasma. In addition, it is observed that
the recovery movement starts at distinct times for different parts of the curtain. Regarding
vy, it is observed that during the first steps of the simulation the movement spreads as much
throughout the prominence body as throughout the corona.

As time progresses, the oscillations are more localised at the prominence and its PCTR but
attenuate at the corona. In the middle and the bottom panel of Figure 2.16 we show that
vy develops different stripes of opposite speed. These bands are localised in the prominence
body but also in the background. The distribution of the velocity traces horizontal bands
at the corona, but these stripes bend when they approach the prominence and take the
shape of the density contour. These clear shear motions indicate differences in periodicity
with height. The numerical results show that from the evolution of the y-component of the
centre of mass, the oscillation period is P = 9.41 min, the damping time is td = 11.9 min,
and the displacement amplitude is f0 = 0.14H. As we expected, P is shorter than the one
of longitudinal oscillations because in a low-β regime slow modes have longer periods. We
obtained that for transverse oscillations P is longer than the one of the relaxation process.
As has already been mentioned, P varies with height, therefore we plot in Figure 2.17 the
oscillation period as a function of z. We computed P by fitting the temporary evolution of
vy for different heights with Equation (2.3) in which the sine was exchanged by a cosine.
We obtained that the periodicity decreases with height. This result was also found by Zhou
et al. (2018).

We again analysed the behaviour of horizontal transverse oscillations from the different events
studied in Section 2.4.1. In Figure 2.18 the scatter plots of P are represented as a function
of wx, ρp0 and B0. The top and middle panels show that the periodicity increases with the
prominence width and the initial density contrast. However, the bottom panel indicates
that P decreases with the magnetic field strength. This behaviour coincides with the results
observed in Figure 2.10 for the relaxation process. In both cases, the decrease with the
strength of the magnetic field is strong and the increase with density and prominence width
is weaker. The fast mode of transverse oscillations is essentially a magnetic wave that is
driven by magnetic forces; for this reason, we expected to find a stronger dependence of the
period on the magnetic field strength.
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(a)

(b)

(c)

Figure 2.16: Evolution of vy at the yz-plane passing through x = 0 in the case of horizontal
transverse oscillations together with the prominence density (orange-coloured isocontours).
The initial parameters are the same as those in Figure 2.1. vy is normalised to cs0 and density
to ρ0.

The restoring force for the horizontal transverse oscillations is the magnetic tension force but
not the gravity or the pressure gradient. The different driving mechanisms for longitudinal
and transverse oscillations reveal the different periodicity of the two oscillation modes.

While for vertical oscillations we obtained that td/P varies with ρp0 and B0, the damping in
horizontal transverse oscillations does not change considerably with the considered parame-
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Figure 2.17: Scatter plot of the period as a function of height in the case of horizontal
transverse oscillations. The initial parameters are the same as those in Figure 2.1.

ters. When we compute td/P from series of the y-component of the centroid, all events show
values that range from 1.25 to 1.34. These values are higher (from 2.79 to 2.92) when the
calculation is made from the series of vy at the point x = 0, y = 0, z = 1.3H. This means
that we have different damping at different parts of the prominence. As was explained in
Section 2.4.1, the attenuation mechanism of the transverse modes is resonant absorption.
For horizontal oscillations the absorption would occur in the upper part of the curtain, in
its PCTR. However, as we showed in Figure 2.16, the shear motions are displaced towards
the inside of the prominence. This behaviour is studied in more detail in Section 2.4.4. The
attenuation of transverse oscillations also depends on the PCTR. As we saw for the vertical
oscillations, we obtained that the smoother the PCTR, the stronger the attenuation. We
obtained that for n = 2, td/P = 0.7, n = 4 td/P = 1.27 and n = 6 td/P = 1.87, respectively.

A combination of the longitudinal and the transverse disturbance simultaneously triggered,
shows that the two modes oscillate independently from each other. We have obtained that
the periodicity of the y-component of the centroid is 9.41 min, the same result as in the
single case. The period of the x-component is now 35.1 min instead of 37 min which was
the case for longitudinal oscillations. The difference could be explained by the fact that the
transversal movement, when pushing the magnetic field lines, modifies its radius.
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Figure 2.18: Same as Figure 2.7 but for horizontal transverse oscillations.
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Figure 2.19: Alfvén continuum spectrum in terms of the periodicity as a function of the
position of each field lines at x = 0. Dashed black and green curves are the isocontours
corresponding to the periods of the vertical and transverse oscillations respectively inferred
from the time-dependent simulations.

2.4.4 Continuum modes

We have computed the Alfvén continuum modes of the MHD equations based on the expres-
sions of Goossens et al. (1985). They derived the continuous spectrum of a 2D magnetostatic
equilibrium. Their study is invariant with respect to y, therefore we considered our structure
as 2D slices in the xz-plane. This is the main approximation because our prominence model
is in 3D. The expression for the modes of the Alfvén continuum is written in Terradas et al.
(2013) (see their Equation (15)) in terms of the distance along the magnetic field lines. Ac-
cording to this equation, we can numerically compute the Alfvén frequency for different field
lines by solving the eigenfrequency problem. To solve the equation, we need to extract the
coordinates of each line and the variations of the magnetic field strength along the field line
for the equilibrium state. We selected diverse magnetic field lines whose footpoints range
from −4.315H to −3.65H in the x-direction and from 0 to 3.5H in the y-direction. The
Alfvén spectrum is represented in Figure 2.19 in terms of the oscillatory period as a func-
tion of the position of each line at the central plane. The computation of the local Alfvén
frequency is useful for understanding the resonant absorption process (see Section 1.3.4)
because, essentially, the resonant surface is the one where this frequency coincides with the
frequency of the global mode inferred from the time-dependent simulations. In Figure 2.19
we show the contour of the global mode for the relaxation process (dashed black line) and
for the horizontal transverse oscillation (dashed green line). For vertical oscillations, the
resonant surface is more external than in the horizontal case. Terradas et al. (2008a) found
that the resonant surface can be located inside the structure, as we have obtained for the
horizontal case. In Section 2.4.1 and Section 2.4.3, according to the velocity distribution of
Figure 2.8 and Figure 2.16, we have estimated where the energy conversion takes place: at
the y-edges of the prominence body for the relaxation case and at the sheared bands inside
the prominence for the horizontal transverse oscillations. However, the location of the reso-
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nant absorption process is clearer when we study the kinetic energy of the system. The top
panel of Figure 2.20 shows that the resonance surface of the vertical motion (dashed black
curve) matches in space the location where the kinetic energy associated with the vertical
velocity component, i.e. Ekin,z = 1

2
ρ v2z , increases due to the energy conversion. Only one

snapshot of Ekin,z at t = 8.4 min is represented, but the maximum of Ekin,z is always localised
around this point until the oscillations attenuate. In the bottom panel of Figure 2.20 we
show a snapshot at t = 32 min of the kinetic energy associated with the horizontal trans-
verse oscillations, that is Ekin,y = 1

2
ρ v2y . Again, the resonance layer almost coincides with

the maximum energy of the system. The exact behaviour of 3D Alfvén resonances has been
studied in Wright & Elsden (2016) and Elsden & Wright (2017). They found that in 3D
an infinite number of possible resonant solutions exists within a resonant zone, where the
energy is accumulated, on which a dominant contour stands out from different ridges. It
is beyond the scope of the present work to calculate the 3D Alfvén resonances, and it is
sufficient to mention that the 2D approach provides reasonable results.
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Figure 2.20: Top panel: Snapshot of the vertical kinetic energy and the density profile
at t = 8.4 min together with the vertical resonant surface (dashed black curve) obtained
in Figure 2.19. The orange-coloured density contours are the same as bottom panel of
Figure 2.8. Bottom panel: Snapshot of the y-component of kinetic energy and the density
profile at t = 32 min together with the horizontal resonant surface (dashed green curve)
obtained in Figure 2.19. The orange-coloured density contours are the same as bottom
panel of Figure 2.16. Kinetic energy is normalised to ρ0 c

2
s0.
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2.4.5 Effect of numerical resolution

Based on Terradas et al. (2016) and in order to study the numerical dissipation of the
system, we have performed a detailed analysis of the evolution of the total energy (Etot) of
the system; the sum of magnetic (EB), internal (Ep), gravitational (Eg), and kinetic energy
(Ek); integrated over the whole 3D domain. The expression EB = 1

2µ

(
B2
x +B2

y +B2
z

)
,

Ep = p
(γ−1) , Eg = ρ z g, and Ek = 1

2
ρ v2. In Figure 2.21 we have represented the total energy

difference with respect to the initial state (∆Etot = Etot (t) − Etot (t = 0)), normalised to
the total energy at t = 0 (Etot,0) in the case of the reference relaxation process (solid line).
The curve decreases until reaching a quasi stationary state as a consequence of numerical
diffusion produced at scales below the spatial grid resolution. As we can see in the dashed
curve of Figure 2.21, increasing the resolution of the system reduces the energy dissipation.
It is important to mention that this reduction in energy loss does not significantly change
the evolution of the system and we obtain essentially the same damping time and the same
period in both simulations. Actually, the energy losses are very small (of the order of
10−2 %) and therefore do not affect the estimation of periods and damping times. In the
cases of horizontal transverse and longitudinal oscillations the simulations also show similar
attenuation. For this reason it seems that the attenuation of our system in the case of
horizontal/vertical oscillations is not connected with numerical diffusion.
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Figure 2.21: Change in total energy for two different grid resolutions in the case of the
relaxation process of the reference simulation.
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2.5 Conclusions and discussion

A 3D numerical study of transverse and longitudinal oscillations in filaments has been pre-
sented. A curtain-shaped prominence is anchored to the base of the corona so that the
system does not develop downwards flows due to Rayleigh-Taylor instabilities, which com-
plicate the analysis of the results of the oscillatory motions. In addition to the fixed foot of
the structure, the behaviour of the system is subject to closed boundary conditions, meaning
that we have imposed line-tying conditions at all sides of the computational box. This per-
fectly reflecting condition applied in the bottom plane is essential to support the structure.
Line-tying conditions applied at the lateral and the upper boundaries ideally imply the con-
servation of the total energy. However, as was already mentioned in Section 2.4.5, the system
shows a little loss of energy due to numerical dissipation. A better grid resolution reduces
the energy dissipation, however, the evolution of the system does not depend on it and we
obtained the same damping time and period for different resolutions. This means that the
attenuation of our system in the case of horizontal and vertical oscillations is not connected
with numerical diffusion. To study the attenuation mechanism for transverse oscillations,
we analysed the velocity distribution of the motions, the dependency of the attenuation on
the PCTR, and the continuum Alfvén modes. In agreement with our simulations, we pro-
posed that the main damping mechanism is resonant absorption. As the theoretical models
predict, we obtained that the attenuation is stronger for a wider PCTR. From the analysis
of the Alfvén continuum modes, we obtained that the location of the resonant surface coin-
cides with the concentration of the kinetic energy as expected from the resonant absorption
process. However, we obtained that td/P ranges from 2.2 to 7.9 for the relaxation process of
different scenarios, values which in principle are higher than expected from the observations.
This means that in addition to the resonant absorption, another type of damping mecha-
nism must be considered in our model. On the other hand, for transverse and longitudinal
horizontal oscillations we obtained a stronger attenuation. One reason that can explain this
significant damping for longitudinal oscillations could be changes in periodicity with height.
The plasma of two adjacent magnetic field lines with different curvature radius oscillates
at a different frequency, so that some shear develops in the system. This type of sheared
viscosity mechanism can also contribute to the attenuation of horizontal transverse oscilla-
tions. The shear motions inside the prominence due to the resonant absorption can brake
the oscillation and increase the attenuation. Our model is relatively simple to understand
the observed damping, and other mechanisms such as non-adiabatic processes, mass flows,
or partial ionisation effects must be considered.

Regarding the periodicity, we reproduced oscillations with periods that range approximately
from 4.2 min to 7.3 min for vertical oscillations, from 28.2 min to 42.3 min for longitudinal
oscillations, and from 7.4 min to 12.0 min for horizontal transverse oscillations. These results
give periods that are somewhat shorter than those reported in the observations. In Tripathi
et al. (2009) the periods associated with vertical motions range from 15 min to 29 min and
in Shen et al. (2014a) from 11 min to 22 min. In Luna et al. (2018) the periods for horizontal
transverse oscillations range from 30 min to 80 min and for longitudinal events from 30 min
to 110 min. We recall that in the field of observations, in contrast to this work, longitudinal
oscillations are motions along the filament axis. Mackay et al. (2010) reported that the
magnetic field rotates with respect to the filament axis by an angle in the range from 15 to
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30 degrees. Then, Luna et al. (2018) in their catalogue considered as longitudinal oscillations
those whose velocity vector forms an angle with the filament axis smaller than 40º. This
suggests that a certain error is made in classifying the oscillation polarisation. Despite the
short results obtained in P , for longitudinal oscillations we performed a reference simulation
that agrees with the pendulum model. However, for values of wx and ρp0 different from
those of the reference simulation, the results move away from the theoretical expression.
This means that another mechanism may drive the longitudinal motions, such as pressure
force. For example, we obtained that the periodicity of the oscillations increases with the
prominence width independently of the polarisation direction. This is an interesting result
because it can be compared with diverse observed events. Luna et al. (2018) collected
a valuable catalogue that can be used to extract useful information, especially from the
statistics section. In agreement with our results, in Figure 21 (panel d) of Luna et al. (2018)
they show that P tends to increase with width for quiescent prominences. In addition, the
catalogue shows that high values of td/P are reported, which means that our results are not
as different as the observed results. Moreover, strong damping of about td/P ∼ 1.25 is the
mean value obtained for longitudinal oscillations. As we found for horizontal transverse and
longitudinal oscillations, Luna et al. (2018) did not find a correlation between td/P and the
filament dimensions.

Another interesting result that we can compare with observations is the variation of P with
height. Hershaw et al. (2011) studied the dependence of the periodicity and the attenuation
on height of two successive trains of transverse oscillations observed on July 30th 2005.
They found that the periods range between 90 and 110 min and increase slightly with
height. Conversely, Shen et al. (2014b) did not find differences of the period with the
altitude in a transverse oscillation observed on August 9th 2012, so that they suggested
that the prominence oscillated as a rigid body. These behaviours differ from our results and
from those of Zhou et al. (2018). We obtained that the period increases with height for
longitudinal oscillations and decreases for transverse ones. These discrepancies suggest that
a deeper analysis of the variations of P with height is necessary. For example, Hershaw et al.
(2011) reported long periods, and if we take into account our simulations we can interpret
that the reported oscillations are longitudinal instead of transversal. In any case, knowing
the oscillation polarisation with respect to the magnetic field is essential for understanding
the nature of the wave motions.

We have exhaustively analysed vertical oscillations for different scenarios. The origin of
these oscillations is the relaxation process of our prominence model. For the stationary
state, we induced a vz perturbation in the reference simulation to trigger vertical motions.
The results (not shown in this work) reveal basically the same behaviour as the relaxation
process. According to this, we could consider the vertical oscillations of the relaxation process
as a winking filament if the velocity amplitude of the movement is sufficiently large. We did
not take the nature of the disturbance into account here. For this reason, in a future work we
will study the dependence of the oscillations varying the characteristics of the perturbation.
This is partially addressed in Chapter 3.
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Chapter 3

Extension of the prominence model:
incorporating shear and external
perturbations

3.1 Introduction

In Chapter 2 we have studied the dynamics of a curtain-shaped prominence embedded in
an unsheared magnetic field. However, the observed magnetic arcades that extend upwards
into the corona from the filament channel and support the prominence plasma show a strong
shear. The angle between the field lines of the arcade and the prominence spine is about
25◦ on average (Leroy et al. 1983). Moreover, the trigger mechanisms of large amplitude
oscillations are usually external waves, such as Moreton or EIT waves, that impact the
prominence and activate the oscillations. On the contrary, in the simulations analysed in
the previous chapter, we have utilised an internal velocity disturbance instead of an external
perturbation.

Luna & Karpen (2012) studied longitudinal oscillations triggered by flows of hot evaporated
plasma that push the thread. These flows are produced during the process of prominence
formation by thermal evaporation-condensation. Zhang et al. (2013) compared the nature
of two types of perturbations. In the first case, a velocity perturbation over the whole
prominence body was performed and for the second case they utilised impulsive heating
deposited near one of the legs of a magnetic loop to mimic a microflare near the prominence.
They found that the oscillation period does not strongly depend on the type of perturbation.
In order to trigger oscillations, internal velocity perturbations have been proposed by Luna
et al. (2016b), Zhou et al. (2018), or Zhang et al. (2019), and Kraśkiewicz et al. (2016)
perturbed their model of prominence by adding a gas pressure pulse. An alternative method
was suggested by Liakh et al. (2020) in which the authors incorporated a source term in the
momentum equation. In this way, all the magnitudes adjust to the source term following
the MHD equations. In spite of the difference between the trigger mechanisms proposed in
numerical studies, all of them are internal disturbances and only Liakh et al. (2020) modelled
external perturbations. For the external disturbance they used a source term in the equation
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of energy which induces a strong pressure perturbation that rapidly propagates towards the
cool prominence. The passing wave deforms the magnetic field lines of the flux rope but
it does not hit directly the dense prominence. However, the changes in the magnetic field
lines propagate producing significant perturbations of the magnetic field that end up being
responsible for the prominence oscillations.

One of the difficulties of using an external velocity pulse located at the tenuous corona is
that, due to the low density there, a very large velocity amplitude is necessary to reach the
required energy to push the heavy plasma. This large amplitude in the initial perturbation
can be challenging from the numerical point of view because it can generate strong shocks.
How we apply the disturbance in the system is a key aspect of the present chapter. This
perturbation is analysed in two different prominence models: the sheared magnetic arcade
and the H&A model, partially described in Chapter 1.

3.2 Sheared magnetic arcades

Since observations show that the filament axis is approximately aligned with sheared mag-
netic field lines, we extend the prominence model of Chapter 2 to have the appropriate angle
between the prominence spine and the field lines. In our arcade model, Equation (1.38), the
magnetic shear is set by the parameter l/k. Figure 3.1 shows the magnetic filled lines for
three different values of l/k. In this case, we set B01 = B02, z0 = 0, and k2 = 3k1. When
l/k = 1, we are in the unsheared configuration (left panel of Figure 3.1). From Figure 3.1
we can discern different features. First, we see that the shear of the magnetic structure
increases when reducing the parameter l/k. When the shear increases longer field lines are
obtained, so that the width of the numerical simulation domain in the y-direction must be
larger than the one in the unsheared case. Another important aspect of the quadrupolar
sheared magnetic arcades is that at the centre of the configuration (x = 0) there is a null
point where the magnetic components Bx and Bz are equal to zero (although for sheared
fields By is different from zero and the term null point is no longer applicable). The height
of this point is

zX =
1

l1 − l2
ln

(
B01

B02

l1k2
l2k1

)
. (3.1)

For unsheared magnetic arcades we have that zX = 0. When we have shear, the magnetic
field lines that cross the point x = 0 and z = zX is totally horizontal along the y-axis. The
middle and right panels of Figure 3.1 show that below zX the spin of the shear points in
the opposite direction. This is clearer in Figure 3.2 which displays the top view of the same
configuration of the middle and the right panel of Figure 3.1. Figure 3.2 also shows that the
shear of the magnetic lines varies with height. The shear angle with respect to the y-axis
is defined as θ = atan(Bx/By). The shear angle as a function of z for l/k = 0.75 (dashed
line) and l/k = 0.55 (solid line) is represented in Figure 3.3. At z = zX , θ = 0. As already
mentioned, below the point zX the direction of the spin reverses which turns into a change
in the sign of θ. For l/k = 0.55 and z = 2H the shear angle is about 25◦ which is the angle
found in the observations.

In addition, Figure 3.1 also shows that the configuration of the magnetic dips of the structure
varies with the magnetic shear. The location of the dips is invariant in the y-direction, for
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Figure 3.1: Magnetic field lines for three different values of the magnetic shear, l/k = 1 (left
panel), l/k = 0.75 (middle panel), and l/k = 0.55 (right panel). In all cases B01 = B02 and
z0 = 0. The selected field lines of each panel cross the structure through x = 0 and y = 0 at
different heights.

Figure 3.2: Top view of magnetic field lines for l/k = 0.75 and l/k = 0.55. In both cases,
B1 = B2 and z0 = 0.

this reason we present in Figure 3.4 some magnetic field lines projected in the xz-plane for
different values of the shear. Firstly, what stands out in this figure is that the region with
dips (from zX to the first concave downwards line, i.e., where the curvature of the field lines
changes) is wider for configurations with less shear. Moreover, a closer inspection of the
figure shows that when the shear increases, the depth and the width of the dips change. To
compare the field lines of the three configurations we plot in Figure 3.5 two lines of each
structure crossing the centre of the structure at the same height. The apex of the top lines

70



3.2. SHEARED MAGNETIC ARCADES

Figure 3.3: Shear angle as a function of height for l/k = 0.75 (dashed curve) and l/k = 0.55
(solid curve).

is almost flat for the three cases, but for the configuration with the strongest shear (green
lines) the field line is more curved. The depth of the dips increases when we move towards
the chromosphere. The bottom lines have a central height equal to zX with l/k = 0.55.
At this point, the depth of the dip is larger for l/k = 0.55 and it decreases with increasing
l/k. On the contrary, the width of the dips increases with decreasing the shear. All these
different features point out that the magnetic support can strongly depend on the magnetic
shear. Another conclusion that can be drawn is that in the present model we do not obtain
deep dips, even when we change the magnetic shear. As we will show in the following, this
has important implications.

Figure 3.4: Projection at the xz-plane of selected magnetic field lines for l/k = 1, l/k = 0.75,
and l/k = 0.55. The lines are set to cross the centre of the structure at the same height.

3.2.1 Initial set up and numerical aspects

To study the dynamics of solar prominences in sheared magnetic arcades we build an isother-
mal stratified background atmosphere as in Chapter 2 (Equation (1.24)), but now, with the
aim of being more realistic, we introduce a thin chromosphere-corona transition region at
the bottom of the domain. This transition consists of an isothermal region whose pressure
scale height is twenty times larger than the one of the coronal part. We impose continuity
in the density and pressure profiles at the chromosphere-corona interface. The transition
region can be seen in Figure 3.6 as horizontal layers of density isocontours, and more clearly
in Figure 3.9 where we display the density profile along a specific field line. The plasma
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Figure 3.5: Selected magnetic field lines for the case l/k = 1 (black lines), l/k = 0.75 (red
lines), and l/k = 0.55 (green lines).

is permeated by a sheared magnetic arcade, given by the magnetic components of Equa-
tion (1.38). We set l1/k1 = 0.55 (right panel of Figure 3.1) to have a shear angle of about
25◦, as the observations suggest. To avoid the point in the domain that inverts the spin
of the field lines we set z0 = zX . The rest of the magnitudes are the same as those of the
reference simulation in Chapter 2, which also includes the parameters of the prominence
mass deposition (Equation (2.2)).

The code we used to solve the MHD equations is the MoLMHD code (see Terradas et al.
2008b; Bona et al. 2009; Terradas et al. 2013, for details about the numerical method),
where we have included the superbee limiter dissipation term (Roe 1985). As in Chapter 2,
we applied line-tying boundary conditions at all planes of the computational domain. The
numerical domain is a box of 180 × 270 × 90 mesh points. The dimensions of the box are
100 Mm in the x-direction, 150 Mm in the y-direction, and 50 Mm in the vertical component.
In this way, we imposed an equidistant grid of 0.556 Mm.

3.2.2 External perturbation

For many oscillatory events reported in the observations we do not identify the trigger
mechanism of prominence oscillations (Luna et al. 2018). However, it is known that wave
disturbances initiated by flares are responsible for triggering the oscillations both, near to
and far from the flare. They are large-scale propagating disturbances in the solar atmosphere
and are considered to be fast mode MHD waves. In addition, there is evidence that these
waves are of non-linear nature. The aim of this chapter is to study the dynamics of solar
prominences triggered by distant disturbances. However, if we simply impose an external ve-
locity pulse, keeping the rest of variables unchanged, we will need a very large initial velocity
amplitude to push the prominence with the required energy. As we have explained before,
there are numerical issues and simulations might not work. To have an initial consistent
perturbation it is necessary for the rest of variables to be modified in order to fulfill the
governing equations, at least in an approximate way. This problem was addressed in Liakh
et al. (2020) who incorporated a source term for each of the MHD equations. In this way,
they produced self-consistent solutions where all the variables of the perturbation adjust
to the source term following the MHD equations. However, we implement an alternative
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method that was partially discussed in Piantschitsch et al. (2020).

We consider the simple situation of a vertical magnetic field as well as a constant density
and a constant pressure. For the perturbations we can assume that the variables depend on
the velocity v, which is transverse to the equilibirum magnetic field. It is not difficult to see
(e.g., Piantschitsch et al. 2020) that for a purely magnetic fast wave, density variations in
the wave are related to the velocity through the following equation

ρpert = ρ

(
1± v

2vA0

)2

, (3.2)

for right (+) and left (−) propagating waves. vA0 is the unperturbed Alfvén speed and v is
the velocity amplitude of the wave. From the adiabatic condition pργ = constant we obtain
(for the right propagation) that

ppert = p

(
1 +

v

2vA0

)2γ

. (3.3)

Finally, the magnetic variations are

Bpert = B
ρpert
ρ
. (3.4)

The previous equations provide the recipe to produce an initial non-linear perturbation with
consistent fluctuations in velocity, density, gas, and magnetic pressure.

Obviously, in an arcade configuration the previous equations are no longer valid since they
were derived for a very simple equilibrium configuration. However, they can be used as a
guide to calculate an approximate form of the perturbation in the inhomogeneous equilib-
rium. In this case the velocity disturbance is imposed to be aligned along the sheared field
lines and external to the dense prominence. It is expressed as

vpert = v0 exp
[
−
(
((x− x∗0)/wx)

2 + ((y − y0)/wy)2 + ((z − z0)/wz)2
)]
, (3.5)

being x∗0 = y/ tanφ − x0 and φ = atan(By/Bx). To excite a fast MHD wave, the velocity
components are expressed as {

vx = vpert sinφ,

vy = −vpert cosφ.
(3.6)

Using this expression for the velocity we apply the previous equations to the rest of the
variables, taking into account that the magnetic perturbation must be perpendicular to the
local magnetic field.

The perturbation pulse should be placed at a certain distance from the prominence body
since we are interested in external perturbations. It turns out that the magnetic arcade
configuration is a periodic system in the x-coordinate. The consecutive arcades are separated
by an interface of a purely vertical field at x = ±L/2. In our numerical domain, we have
only one arcade. If the perturbation was located in the adjacent arcade, the wavefront would
remain trapped in the neighbouring arcade. To avoid this situation, the initial position of

73



3.2. SHEARED MAGNETIC ARCADES

the perturbation must be located inside the main arcade, so that we are not able to initially
place the pulse too far from the prominence body with the present magnetic configuration.
The initial velocity amplitude of the pulse is v0 = 5 cs0, where cs0 = 166 km s−1 is the sound
speed. We set wx = 0.8H, wy = 1.8H, wz = 1.5H, x0 = 4.5H, y0 = 3H, and z0 = 2.5H.
The module of the velocity pulse is plotted in the top left panel of Figures 3.6 and 3.7.

3.2.3 Results

As in Chapter 2, the prominence mass deposition is instantaneous and so the initial config-
uration is not in static equilibrium. Unlike in Chapter 2, now the relaxation phase is not
relevant here. During the relaxation we have introduced a simple dissipation term in the
equation of motion to force the system to quickly achieve an equilibrium. This method is
efficient to save computational time in the relaxation process.

At this stage it is important to mention that the density profile tends to softly rotate with
the magnetic lines. When the point given by zX is inside of the numerical domain as in
Figures 3.1 and 3.2, the spin of the shear points in the opposite direction and so the rotation
of the prominence during the relaxation appears at different heights. The inverse turn
strangles the plasma and abruptly increases the pressure which causes the simulation to
stop. For this reason we imposed zX = 0. The final state after the relaxation is plotted in
the first panels (t = 0) of Figures 3.6 and 3.7.

Figure 3.6: Time evolution of density and magnetic field lines. The module of the velocity
perturbation (normalised to cs0 = 166 km s−1) is plotted in the top left panel at t = 0. The
red magnetic field line is used to find the density profile of Figure 3.9.
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Figure 3.7: Top view of Figure 3.6.
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Figure 3.8: Time evolution of the density and magnetic field lines for the first time steps
of the simulation. The density isocontours depict the prominence body at the xy-plane at
z = 0.79H. This height corresponds approximately to the dip height of the red field line
of Figures 3.6 and 3.7. The magnetic field lines are projections at the same xy-plane. The
dashed curves correspond to the initial state.

Once the prominence is relaxed enough, we can remove the dissipation term in the equation
of motion and perturb the prominence with the external disturbance described before. The
module of the velocity perturbation is plotted in the top left panel of Figures 3.6 and 3.7
at t = 0. The perturbation moves towards the prominence and impacts transversely the
dense body at the closest edge. Figures 3.6 and 3.7 show the time evolution of the 3D
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structure for a long time period. Before analyzing the dynamics of the system for long
time periods, it is important to observe how the prominence shakes during the first time
steps. Figure 3.8 shows the time evolution of the prominence body at the beginning of the
simulation. The top left panel shows the initial state and it is plotted as dashed lines in the
other panels. We see that at the very beginning only a small portion of the prominence moves
into the right direction. This displacement has a very small amplitude. In the top middle
panel we clearly see that the plasma sweeps the magnetic field lines. The first displaced
magnetic field lines are those placed at the left of the red field line, i.e., those that are
closer to the perturbation. This indicates that the filament response to the passing wave
is not simultaneous for the whole structure. The movement rapidly reaches its maximum
displacement, approximately at t = 0.46 min (top middle panel), the motion reverses and
the prominence starts to oscillate transversely. The right maximum displacement is again
reached approximately at t = 1.28 min so that we obtain a very short oscillation period for
the transverse oscillation. At t = 2.33 min (bottom right panel) we can see that the motion
has been moving along the filament spine so that the density isocontours start to deform
throughout the whole structure.
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Figure 3.9: Time evolution of the density profile along the red coloured magnetic line of
Figures 3.6 and 3.7. The time of each curve corresponds to the time step of Figure 3.6. The
chromosphere-corona transition region is shown at the feet of the filled lines.

After some cycles the prominence plasma starts to flow downwards along the magnetic field
lines. This process is clearly observed in the 3D Figures 3.6 and 3.7. At t = 17.5 min (top
middles panel) the direction of flux is not well defined yet, but at t = 35.0 min (top right
panel) we can see that the movement is produced only at one edge of the filament. In the sec-
ond row of Figure 3.7 the movement along the magnetic field lines is visible. The prominence
foot apparently remains unperturbed and only the upper parts of the structure eventually
fall. For the longitudinal movement we do not see that the motion reverses, meaning that
we cannot identify a clear oscillatory event. However, when we observe the movie of the
simulation we can discern plasma rebounds during the drop. These rebounds have also been
detected by other authors in observations or in studies of prominence formation by thermal
evaporation/condensation processes in one-dimensional curved flux tubes without or with
shallow dips. For example, Luna et al. (2012b) described that most of the blobs formed in
their shallow-dip or loop shaped model of tubes ‘slow down as they approach the tube feet,
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and in some cases several bounces occur before they fall finally to the chromosphere’. de
Groof et al. (2005) observed bright blobs of plasma falling along magnetic field lines. They
found that when the falling blobs encounter the transition region, they ‘slow down or even
bounce back, before they reach the solar surface’. The downward flows along the magnetic
field lines are clear in Figure 3.9, which shows the time evolution of the density profile along
the red coloured field line plotted in Figures 3.6 and 3.7. We can see how the prominence
structure is initially placed at the centre of the field line, around s = 6H, but it rapidly
moves towards one of the feet.
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Figure 3.10: Time evolution of the maximum prominence density along the red magnetic
field line of Figures 3.6 and 3.7.

In Figure 3.9 we also see that the peak of the density decreases but its width increases,
meaning that the prominence width grows during the drop. Figure 3.10 shows the displace-
ment of the density peak as a function of time. As we saw in Figure 3.8, at the beginning
of the simulation the prominence body remains located at the original position. Around
t = 12 min, the prominence starts to move until t ≈ 60 min. At this point the displacement
stops at approximately 10 min, exhibiting the rebound previously mentioned. At the end of
the simulation, around 160 min, we clearly see a second bounce. The mean velocity of the
drop is 2.9 km s−1, with a maximum peak of 10 km s−1 at t = 80 min. These velocities are
smaller than the reported values from observations (Schrijver 2001; De Groof et al. 2004)
and simulations. Luna et al. (2012b) investigated the process of formation and subsequent
evolution of prominence plasma in one-dimensional magnetic arcades. They found that after
the formation, the plasma moves along the field lines with a mean value of 34.2 km s−1 for
quasi horizontal motions and 51.0 km s−1 for quasi vertical falling blobs. In a similar work,
Müller et al. (2004) found flow velocities of the order of 100 km s−1. Nevertheless, while the
falling plasma of these studies is in individual blobs, in our case the falling plasma is a portion
of a 3D curtain-shaped structure whose feet are anchored to the chromosphere so that the
dynamics must be different. Actually, Zirker et al. (1998) observed counter-streaming flows
along closely vertical prominence barbs at speeds of 5− 20 km s−1, and Berger et al. (2008)
reported downflow streams that occur in a hedgerow prominence with speeds of 10 km s−1,
which are velocities values that are closer to our results but a detailed comparison is out of
the scope of the present study.

Besides the oscillatory and downward motions, Figure 3.7 shows a decrease of the density
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that matches in space the location where the perturbation was initially placed. This density
dimming remains static at its original position for all the simulation. It is a straightforward
effect of the sudden perturbation we imposed, that can change the background equilib-
rium. The magnetic field and the density are coupled through the frozen condition (see
Section 1.3.1) and so the plasma motion must conserve the magnetic flux. This implies that
the ratio between the magnetic field and the density, co-moving with the fluid, is ideally
constant. Another magnitude that is conserved for adiabatic processes is entropy, and for
perpendicular propagation there is a balance between gas and magnetic pressure. Under
these conditions a positive pressure perturbation, as in the present case, produces a decrease
in the final density. This decrease of the density can be associated to parts of the coronal
dimming observed in flares.

3.3 Hood & Anzer model

The aim of this chapter is to investigate oscillations triggered by external waves in promi-
nences embedded in sheared magnetic fields. We have seen that the chosen sheared magnetic
arcade model does not allow to keep mass suspended since it eventually falls down towards
the photosphere. For this reason, we decided to investigate other prominence models. We
focussed on the H&A prominence model (see Section 1.3.3). In this model we can impose a
magnetic shear in the structure without losing the magnetic dips, relevant for the magnetic
support. This model is initially in a magnetohydrostatic equilibrium meaning that the relax-
ation phase is not necessary. In any case, we have checked that the structure is in numerical
equilibrium with only very small flows due to the grid discretization. To obtain the initial
magnetic configuration, we first have to numerically solve Equations (1.42) and (1.46). Then,
the magnetic field is given by Equation (1.40) and the gas pressure by Equations (1.41) and
(1.45). We have chosen the following temperature profile (scale height),

Λ(kx) = kΛc + (kΛp − kΛc) exp
[
−(kx/0.25)4

]
, (3.7)

being the corona and prominence pressure scale heights Λc = RTc/(µ̃g) and Λp = RTp/(µ̃g),
respectively. The coronal and prominence temperatures are Tc = 106 K and Tp = 104 K,
gravity acceleration is g = 0.274 km s−2, the gas constant R = 8, 300 m2 s−2 K−1, and the
mean molecular weight for a fully ionised plasma is µ̃ = 0.5. The pressure scale height
profile is represented in Figure 3.11.

-2 -1 0 1 2

0

10000

20000

30000

40000

50000

60000

kx

Λ
(k
m
)

Figure 3.11: Pressure scale height as a function of position across the prominence body.
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We select the dimensions to scale k so that kΛc = 0.5, and velocity is normalised to the
Alfvén speed vA = 1, 000 km s−1. For a typical prominence we set the initial parameters
X(x = 0) = X0 = 1, Z(x = 0) = 0, P (x = 0) = c2s0/γ, being γ = 5/3 and the square of the
reference sound speed c2s0 = Λcγg. Finally, the density can be determined as ρ = p/(Λ(kx)g).
The initial configuration is plotted in the top left panel of Figure 3.12.

Once we have the initial configuration, we apply a perturbation to trigger the oscillations.
To numerically solve the MHD equations we utilised again the MoLMHD code. Note that
the configuration studied in this section is 2D now. Line-tying conditions are applied at all
the boundaries of the numerical domain that consists of a box of 270 × 135 mesh points.
The dimensions of the box are determined by the lateral dimension of the arcade, which is
defined as the point where the x-component of the magnetic field is null. For this set of
parameters we obtained that the half of the arcade is xa ≈ 1.76/k = 213 Mm, therefore the
resolution of the system is about 1.58 Mm.

Figure 3.12: Time evolution of density, magnetic field lines, and vx for a Hood & Anzer

prominence model. vx is normalised to vA = 1, 000 km s−1 and density to
X2

0

µ v2A0
.

We start with a very simple case: an unsheared structure (α = 0) so that the y-component of
the magnetic field is zero. A simple external velocity perturbation points in the x-direction in
order to trigger longitudinal oscillations (see top left panel of Figure 3.12). For this case we
did not use the disturbance previously described in Section 3.2.2. The spatial distribution
of the pulse is a two-dimensional Gaussian whose initial amplitude is v0 = 50 km s−1. In
the top row of Figure 3.12 we can see the first time steps of the simulation. The pulse
splits in two parts, one part goes towards the dense plasma and the second one falls down
along the magnetic field lines. At t = 8.16 min the pulse impacts the prominence. As the
heavy prominence apparently does not respond to the passing wave we might think that the
initial velocity amplitude of the pulse is not high enough. However, some time after the
impact (bottom row of Figure 3.12), the prominence starts to move towards the left. As we
saw in Chapter 2 we expected that the motion reverses triggering longitudinal oscillations.
However, the prominence body falls down along the field lines and a gravitational instability
inevitably grows (see blue coloured curves). We have repeated the simulation for different
configurations and for different shear angles obtaining the same effect. As a result of the
simulations, we conclude that the H&A model is not stable to lateral displacements although
it contains magnetic dips.
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3.4 Conclusions and discussion

We studied the dynamics of prominences perturbed by an external shock wave for two
different model of prominences. First we numerically studied a curtain-shaped prominence
anchored in a chromospheric layer that connects to an isothermal stratified corona and it
is permeated by a strongly sheared magnetic arcade. As a consequence of the shear, the
magnetic filled lines have shallow dips at the bottom of the structure or even lines with no
dips at higher heights. Despite the lack of dips in the magnetic field, the system reaches an
static equilibrium before introducing the perturbation. Once we reach a relatively relaxed
situation we instantaneously introduce an external transverse perturbation to mimic a typical
observed excitation event such as an EIT wave. The shock wave rapidly impacts the dense
body activating different motions. We distinguish two phases: a short oscillatory stage and
longer phase of downflows and sort of lack of equilibrium.

Once the wave impacts the dense plasma it starts to oscillate perpendicularly to the magnetic
field lines. The magnetic field is frozen to the plasma so that the motion transports the lines
with the flow. The transverse oscillatory period is of the order of 1 min, which is a very short
compared to the transverse periods obtained in Chapter 2 or in other numerical studies (Luna
et al. 2016b; Zhou et al. 2018), of the order of 5 − 10 min. However, very short oscillatory
periods (1 − 5 min) in prominences have also been detected (Tsubaki et al. 1987; Blanco
et al. 1999; Okamoto et al. 2007).

The second phase consists of plasma downflows. The transverse oscillations destabilises the
plasma configuration in such a way that a part of the filament moves downwards along the
magnetic field lines. During this process no clear oscillatory pattern is observed, however we
can discern plasma bounces. Only the edge of the filament where the shock wave hits the
plasma drops. We obtained that the velocity of the downflow is 2.9 km s−1. This speed is
too slow to consider the flow as a falling blob of coronal rain, however we can compare the
motion with the movements along the filament barbs. As the prominence falls, the coronal
plasma is compressed increasing the gas pressure below the flow front as they approach the
chromosphere. The pressure gradient may decelerate the downward flows and cause the
observed rebounds.

The second prominence model utilised to study prominence oscillations triggered by external
perturbations is the H&A model. This is a 2.5D prominence model, with normal polarity,
in which all the vectors have three spatial components but there is no dependence on the
y-coordinate. The magnetic dip is the result of the equilibrium between magnetic and
gravitational forces. Once we apply an external velocity pulse to trigger oscillations along
the magnetic field lines, we expected that the prominence would describe an oscillatory
motion, at least for some choices of the parameters. However, we found that the prominence
mass always drops. The column of plasma does not fall as a rigid body but drops at different
speeds depending on the height. As the prominence falls, the pressure increases below, but
now the increase of the pressure gradient is not sufficient to decelerate the motion so that a
velocity instability grows exponentially.

As a result of the two studies the question that arises is whether a gravitational equilibrium
is possible under the absence of magnetic dips. Note that in the model used in Chapter 2
we did not find this gravitational instability. This is the main point that is addressed in the
following two chapters of this Thesis.
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Gravitational instabilities in threads
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Chapter 4

Curved magnetic fields without dips 2

4.1 Introduction

The solar atmosphere shows a variety of dynamic structures much denser than the back-
ground corona. These formations, guided by the curved magnetic field and most likely
created by thermal instabilities or non-thermal equilibrium, have their own dynamics and
are undoubtedly affected by the gravity force. Examples of such configurations are solar
prominences, like those studied in Chapters 2 and 3, and introduced in Chapter 1, or coro-
nal rain among others.

High-resolution observations show that the prominence body is composed of a bunch of indi-
vidual threads of plasma. Each of these threads is embedded along a magnetic flux tube, so
that the structure of a prominence thread can be modelled as one dimensional hydrodynamic
problem. The magnetic field of these models is not taken into account explicitly since the
magnetic field is not affected by the plasma dynamics. This assumption is more in accor-
dance with active prominences due to their stronger magnetic fields. Prominence threads
are not the only dense plasma structure we can observe along magnetic flux tubes. Loop-like
magnetic structures also work as paths for falling blobs of coronal rain (Antolin & Rouppe
van der Voort 2012; Antolin et al. 2012), so that the model presented in this work could
be applied to any low-beta plasma structure in the solar atmosphere where field-aligned
instabilities of density enhancement can occur, e.g. coronal rain. The shape of a curved
magnetic flux tube with (or without) dips is represented by the definition of the projected
gravity along the magnetic field line. This type of model has been utilised in many studies
such as numerical simulations of prominence formation (Dahlburg et al. 1998; Luna et al.
2012b; Zhou et al. 2014), simulations of longitudinal oscillations in solar prominences (Luna
& Karpen 2012; Zhang et al. 2012, 2013), or in the theoretical study of normal modes in
prominence oscillations (Luna et al. 2012a). The next step is the study of the gravitational
stability of these threads.

A common method to study the stability of a system is based on the frequency analysis of

2This chapter is based on: Adrover-González, A., Terradas, J., Oliver, R., Carbonell, M.; Gravitational
instability of solar prominence threads: I. Curved magnetic fields without dips, Astronomy and Astrophysics,
accepted for publication.
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the oscillatory modes. An alternative method to study the stability of a system is based on
bifurcation theory. This is a mathematical study that, given a specific dynamical system,
determine whether or not the existing equilibrium points, also called fixed points (hereafter
we mostly use this notation), are stable when key parameters of this system vary. Changes of
the stability of equilibrium points take place at the bifurcation points. At these bifurcations,
the system can create or destroy pairs of equilibrium points. In solar physics, bifurcation
theory has been applied to the study of creation or annihilation of magnetic null points in
the solar corona (see Priest et al. 1996, 1997; Brown & Priest 2001).

In this chapter we comprehensively investigate the gravitational instability by using a very
simple configuration. This allows us to disentangle the main physical processes that occur in
the system. We consider a circular magnetic flux tube in which gravity has a spatially varying
parallel component along the field lines. We use elementary physics describing a plasma in
this configuration, the interplay between gas pressure and gravity force. Magnetic field is
assumed not to change due to the presence of the density enhancement or thread, and it
simply acts as a guide for the longitudinal motions. We do not include non-ideal effects that
are most likely important in the solar corona (and chromosphere), because in our opinion,
the purely mechanical situation under line-tying conditions in the absence of dissipative
mechanisms has received little attention in the literature and needs to be understood more
deeply. We start with a magnetic flux tube without the presence of a magnetic dip. The
effect of magnetic dips will be addressed in Chapter 5.

4.2 Background equilibrium solution

We start with the description of our model. We assume that the shape of the magnetic field
is circular. Among other implications this means that the flux tube along a given field line
has constant cross-section, A0, since the distance between two field lines is constant along
the field (see dotted curves in Figure 4.1 top panel). As a consequence, the magnetic tube
geometry reduces to a 1D problem for which we analyse the gravitational stability in the
direction of the magnetic field. In spite of the ambiguity, all through this and next chapter
we refer to our model as a magnetic flux tube. We denote by s the coordinate along the
tube, starting from the left foot. The total length of the magnetic tube is L and the top
or apex is located at s = L/2. Gravity is pointing downwards and the projection along the
field lines in this circular configuration is

g‖(s) = −g cos
(
π
s

L

)
, (4.1)

being the radius of the field line R = L/π. The hydrostatic equation along the tube is simply

dp

ds
(s) = ρ(s) g‖(s), (4.2)

meaning that the pressure derivative with position must balance the projected gravity force
along the field lines. Since we assume an isothermal atmosphere the sound speed, cs0, is
constant and we write

p(s) =
c2s0
γ
ρ(s), (4.3)
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where γ = 5/3. Introducing this expression into Equation (4.2) we find the following simple
differential equation

dρ

ρ
=

γ

c2s0
g‖(s)ds, (4.4)

which is integrated directly to give

ρ(s) = ρ̄0 exp

[
−γg
c2s0

L

π
sin
(
π
s

L

)]
, (4.5)

being ρ̄0 the reference density at s = 0 and s = L, i.e., at the footpoints of the magnetic
tube. According to Equation (4.3) gas pressure and density have the same dependence with
the coordinate s.

4.3 Equilibrium solutions containing threads

A stratified prominence unbounded with height, as for example, in the Hood & Anzer (1990)
model (see Chapters 1 and 3), can be seen as a continuous collection of threads stacked in
the vertical direction but located at magnetic dips. It is crucial to understand the stability of
a density enhancement or equivalently a thread in the solar atmosphere even in the absence
of magnetic dips as we have explained in Section 4.1.

The idea is to analyse the simple situation of a finite mass (called generically a thread,
hereafter) with density ρt located on the curved magnetic field (see Figure 4.1 for a sketch of
the model). The question is whether this equilibrium is stable or unstable and we investigate
the conditions in which the system allows equilibrium solutions at lower heights.

The basic equation of our system is the momentum equation

ρt
d2s

dt2
= −dp

ds
(s) + ρt g‖(s), (4.6)

being s the coordinate of the centre of the thread along the curved path. Since the thread
is surrounded by plasma, fluctuations in gas pressure at the edges of the thread in the
longitudinal direction create a net force. We need to provide an expression for the gas
pressure derivative. The other force existing in the system is the gravity projection along
the magnetic field line given in Equation (4.1). Before we go into the details about the
calculation of the gas pressure derivative it is necessary to describe the general features of
our system from the mathematical point of view.

In order to analyse the stability of the system we write Equation (4.6) as the vector field(
ṡ
v̇

)
=

(
v

− 1
ρt

dp
ds

(s) + g‖(s)

)
, (4.7)

where the dot represents the time derivative. The system has equilibrium or fixed points
when

v = 0,

− 1

ρt

dp

ds
(s) + g‖(s) = 0, (4.8)
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Figure 4.1: Sketch of the basic model. The upper panel corresponds to the situation in
which the plasma thread, represented by the dark rectangle of length lt, is located at the
tube apex. This configuration is in an equilibrium that can be stable or unstable. The lower
panel represents a new equilibrium of the thread at a lower height. The curved magnetic field
is uniform and directed along the tube axis. The gravity force is pointing downwards and is
projected along the field line according to Equation (4.1). The footpoints are supposed to
be anchored at the base of the corona, represented by the shaded grey area.

and the corresponding solution for the position is denoted as se (the velocity at the equilib-
rium point is always zero). The linearised version of Equation (4.7) is(

ṡ
v̇

)
= A

(
s
v

)
, (4.9)

where the matrix A is the Jacobian,

A =

(
∂ṡ
∂s

∂ṡ
∂v

∂v̇
∂s

∂v̇
∂v

)
=

(
0 1

f(s) 0

)
, (4.10)

where

f(s) =
d

ds

[
− 1

ρt

dp

ds
(s) + g‖(s)

]
. (4.11)

The eigenvalues of A at the equilibrium points (s = se) provide valuable information about
their stability. If f(se) > 0 we have

λ± = ±
√
f(se). (4.12)
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In this case the fixed point is a saddle point since we have real values with opposite signs
(e.g., Jordan & Smith 1987). This point is unstable.

If f(se) < 0 (in this case the linearised system is exactly the same as that of the simple
harmonic oscillator equation), the eigenvalues are

λ± = ± i
√
|f(se)|. (4.13)

This corresponds to a linear centre which is a stable point. The last case is when f(se) = 0,
this is a degenerate case but still provides information about the stability of the equilibrium
points.

4.3.1 Thread initially at the tube apex

We analyse first the situation of the thread initially located at the top of a curved magnetic
field (see Figure 4.1 top panel). This mass is in equilibrium since the gravity force is zero
at s = L/2 (see Equation (4.1)), and the gradient of the background pressure is zero at the
tube apex (see Equations (4.3) and (4.5)). The goal is to obtain an approximation for the
pressure derivative in Equation (4.8) once the thread has moved from the initial equilibrium
position. In our model we apply line-tying conditions, meaning that pressure fluctuations are
not lost along the field lines at the base of the corona. There is no energy leakage through
the footpoints and mass flows along the magnetic tube injected from the photosphere are not
allowed. Therefore we have perfect reflection at these points because of the big difference
in density between the photosphere and corona. It is important to remark that this specific
boundary condition allows us to have suspended threads at a given height even in the absence
of magnetic dips and that the presence of a chromospheric layer (not included in our model)
may affect how the pressure is balanced along the tube.

We denote the length of the thread as lt and by a simple geometrical reasoning lt/2 <
s < L − lt/2 since the thread edge cannot connect with the base of the corona. Under
equilibrium at s = L/2 the length of the external part of tube that contains the thread
is l0 = L/2 − lt/2 along each loop leg (see Figure 4.1 top panel). We have the simple
relation L = 2l0 + lt. Now we assume that the thread has moved to another location along
the magnetic field (see Figure 4.1 bottom panel). The distance on the left part is l1 now
(different from l0), while the distance on the right part is l2. We have that l1 = s− lt/2, and
l2 = L−l1−lt = L−s−lt/2. Quiescent prominences are typically 100−200 Mm long (L) and
are about 100-fold denser than the surrounding corona (ρt/ρ0). However, it is known that
the entire bodies of prominences consist of a collection of individual short threads of plasma
located in long field lines so that only a fraction of each field line (lt) is filled with dense
plasma. Observations show that the typical thread length ranges from 0.3 Mm to 20 Mm
(Lin et al. 2005; Mackay et al. 2010). On the other hand, the length of blobs of coronal
rain is shorter and ranges approximately between 0.2 Mm and 2.4 Mm with a distribution
pick around 0.5 − 0.6 Mm (Antolin & Rouppe van der Voort 2012; Antolin et al. 2012). In
this study a wide range of the thread parameters will be utilised to exemplify a vast sort
of prominence threads (see Mackay et al. 2010; Engvold 2015, for a detailed description of
solar prominences).

Since the system is assumed to be dissipationless we consider that the evolution during the
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Figure 4.2: Left- (black line) and right- (red line) hand sides of Equation (4.19) as a function
of s/L, for three different values of lt. In the top panel the system is linearly stable with
one solution (see circle). On the bottom panel the system relaxes to a new equilibrium at
a lower height (see the two complementary solutions) and the trivial solution becomes an
unstable solution. In all cases L = 10H and ρt = 100 ρ0; lt = L/110 (top panel), lt = ltb
(middle panel) and lt = L/30 (bottom panel). The value ltb ≈ L/77.08 is obtained when
the derivatives of the two curves at s = L/2 are the same (see Equation (4.20)). The
vertical dashed lines represent the edges of the domain of the variable s, namely s = lt/2
and s = L− lt/2.

motion of the thread is adiabatic. The behaviour of the plasma in the evacuated parts of
the tube, i.e., where the density is low, is similar to that of a piston because of the line-tying
conditions at the footpoints. The gas pressure can be written as the background, stratified

88



4.3. EQUILIBRIUM SOLUTIONS CONTAINING THREADS

due to gravity, plus a term that depends on the position of the thread. The key idea here
is to apply the adiabatic law to each part of the tube but to this term only, removing the
contribution from the background,

p1 (l1A1)
γ = p0 (l0A0)

γ ,

p2 (l2A2)
γ = p0 (l0A0)

γ , (4.14)

where p0 represents the reference pressure before the thread has moved, changing the length
of the evacuated part from l0 to l1 and pressure from p0 to p1 for the left part. For the right
part we have changes from l0 to l2 and from p0 to p2. Since we are considering a perfectly
circular geometry we have that A0 = A1 = A2 and the cross-sectional areas cancel in the
previous expressions. Now from Equation (4.14) we obtain that

p1(s) = p0

(
l0
l1

)γ
= p0

(
L/2− lt/2
s− lt/2

)γ
,

p2(s) = p0

(
l0
l2

)γ
= p0

(
L/2− lt/2
L− s− lt/2

)γ
. (4.15)

At this point we impose the condition that the plasma thread has to be in static and sta-
tionary equilibrium, i.e., no flows are allowed and the solution does not change in time.
These conditions imply that Equation (4.7) reduces to Equation (4.8). To simplify things
we assume that the thread does not change its shape and keeps its length, lt, constant. Now
we approximate the gas pressure derivative that appears in Equation (4.8) as

dp

ds
(s) ≈ ∆p

∆s
(s) =

p2(s)− p1(s)
lt

. (4.16)

Since the thread has a finite length, gravity changes along it, therefore this term is approxi-
mated by the average gravity on the thread

ḡ‖(s) =
1

lt

∫ s+lt/2

s−lt/2
g‖(s)ds = −g 2

π

L

lt
sin

(
π

2

lt
L

)
cos
(
π
s

L

)
. (4.17)

Since under typical conditions lt � L, using the Maclaurin expansion of the sinus for small
arguments, we recover exactly g‖(s) in the previous expression. Hereafter, to simplify things
we use g‖(s) from Equation (4.1) instead of Equation (4.17).

The hydrostatic equation for the thread is therefore

p2(s)− p1(s)
lt

= ρt g‖(s). (4.18)

Using Equation (4.3) for the sound speed together with the previous expressions for pressure
and gravity we obtain the following equation for s, representing the location under static
equilibrium of the dense thread along the tube,(

L/2− lt/2
L− s− lt/2

)γ
−
(
L/2− lt/2
s− lt/2

)γ
= − γ

c2s0

ρt
ρ0
g lt cos

(
π
s

L

)
, (4.19)
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where c2s0 = γp0/ρ0, and ρt/ρ0 corresponds to the density contrast between the thread and
the density background at s = L/2 − lt/2. The parameter ρt/ρ0 must be much larger than
one since we are not taking into account any energy flux through the thread and its mass
and length are assumed to be constant.

Equation (4.19) is a transcendental one and it has to be solved numerically. To search
the numerical solution of Equation (4.19) we used the Findroot command of Mathematica1

(Wolfram Research 2020). From now on we denote se a solution of Equation (4.19). It is
easy to verify that se = L/2 is a solution for any values of the parameters. Hence, there is
always an equilibrium solution at the tube apex (sA

e = L/2) that can be stable or unstable.
Furthermore, the symmetry of the model with respect to s = L/2 implies that if there are
additional solutions, they will appear in pairs (sL

e , s
R
e ) verifying sL

e + sR
e = L, i.e. the

solutions will be distributed symmetrically with respect to s = L/2, one on the left (sL
e )

and the other on the right part (sR
e ) of the tube.

To understand the nature of the these possible situations we have plotted in Figure 4.2 the
left- and right-hand side terms of Equation (4.19) as a function of s, for fixed parameters L,
cs0, g, ρt/ρ0, and varying lt using the projected gravity given in Equation (4.1). The gravity
acceleration is g = 0.274 km s−2, and we take a spatial reference length of H = 10, 000 km.
The sound speed takes a value of cs0 = 166 km s−1 for a fully ionised coronal tube with 106 K
temperature. When the two curves cross (see circles) we have a solution at that particular
point. On the upper panel we have only one solution, the trivial one at sA

e = L/2, while on
the bottom panel three solutions appear, the trivial one plus two complementary solutions.
As we will see in Section 4.4, in the first situation the mass will remain at its original
position, and, upon being subject to a small disturbance, it will oscillate around this point
because this equilibrium is stable. In the second situation, the mass is not stable at the
initial position at the apex and after being perturbed it will move to one of the solutions
along the legs which are energetically more favorable. The stability analysis performed here
and in the following sections provides a simple criterion that tells us when a plasma thread
is gravitationally stable or unstable.

The transition between one to three solutions is represented in the middle panel of Figure 4.2
and the mathematical condition is that the slopes of the curves are the same for the left-
and right-hand sides of Equation (4.19),

(L/2− lt/2)γ

(L− s− lt/2)γ+1
+

(L/2− lt/2)γ

(s− lt/2)γ+1
=

1

c2s0

ρt
ρ0
g lt

π

L
sin
(
π
s

L

)
. (4.20)

Considering the following equation

f(s) =
d

ds

[
− 1

ρt

dp

ds
(s) + g‖(s)

]
= 0, (4.21)

and using the expressions for the pressure derivative (Equation (4.16)) and the projected
gravity (Equation (4.1)) we obtain Equation (4.20). When Equation (4.20) or Equation (4.21)
is satisfied together with Equation (4.19) the system is said to have a bifurcation point. We
realise that the left-hand side term of Equation (4.21) is precisely the term inside the square

1https://www.wolfram.com/mathematica
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root of the computed eigenvalues in Equations (4.12) and (4.13). We have shown that de-
pending on the sign of f(se) the nature of the equilibrium solutions changes. When f(se)
is positive (Equation (4.12)) the eigenvalue λ− represents an exponentially damped solution
that is eventually dominated by the growing solution in time associated to λ+ of the form
exp(τt) where the growth time is τ = λ+. When f(se) is negative we have a stable lin-
ear centre with a harmonic time-dependence of the form exp(iωt) and frequency ω = λ+/i
(Equation (4.13)). In this case, it is known from linear theory of ODE systems that we
cannot conclude that the equilibrium point is truly a centre since it could be also a stable
or unstable spiral (e.g., Jordan & Smith 1987). Nevertheless, when the system is reversible
or energy conservative (Hamiltonian), and in our case the two conditions are fulfilled, the
linear centre is indeed a true centre (e.g., Strogatz 2018, Sections 6.5 and 6.6) and stability
is ensured. In Section 4.4 we confirm using physical arguments that the equilibrium point is
stable.

Let us discuss the results from the physical point of view. Figure 4.2 shows that the existence
of the non-trivial solutions of Equation (4.19) depends on the thread model parameters.
Figure 4.3 (top panel) shows the equilibrium position se as a function of ρt/ρ0 for different
values of L when the thread length is lt = 0.1H. We obtain that the system only develops the
sL
e and the sR

e solutions for values of ρt beyond ρtb (see thin dashed vertical line). When ρt <
ρtb, meaning before the appearance of the bifurcation, sA

e is the only equilibrium position, so
that we are in the situation of the top panel of Figure 4.2 and therefore sA

e /L = 0.5 is stable.
However, when the thread structure allows the existence of two complementary solutions,
these are energetically more suitable so that sA

e , that remains located at se/L = 0.5 (see
horizontal dashed lines in Figure 4.3 top panel), becomes an unstable solution. To distinguish
between stable or unstable solutions, we represent in Figure 4.3 (and in the following figures)
stable solutions as solid curves and unstable solutions as dashed curves. In addition, we
realise that for the three values of L, sL

e and sR
e appear around the same bifurcation value

ρtb. This means that the bifurcation density value from which we obtain an equilibrium out
of the apex of the structure, does not strongly depend on the length of the magnetic tube.
Note that se is normalised to H for normalisation purposes since if we keep the normalisation
to L, the solutions of the three configurations overlap. This means that the normalised se/L
does not depend strongly on L for this set of parameters. This feature is clearer in the
bottom panel of Figure 4.3 where se as a function of L is plotted (when L is large the stable
solutions are almost horizontal). Moreover, as was expected, the equilibrium position of the
thread drops with increasing ρt. It is interesting to study the dependence of the equilibrium
position on the thread length. Figure 4.3 (middle panel) shows se as a function of lt/L for
different values of L when ρt/ρ0 = 100. For L = 10H (black curve) we obtain that below
the bifurcation se = sA

e is the only solution of Equation (4.19) and this is stable, but when
lt > ltb, sA

e becomes unstable and the emerged branches sL
e and sR

e are stable. For L = 15H
and L = 20H the bifurcation thread length is out of the plot and their sA

e overlaps with that
for L = 10H at se/L = 0.5. In Figure 4.3 (middle panel) we also see that the equilibrium
position of the thread changes along the magnetic tube when the thread length increases.
Figure 4.3 (top and middle panels) shows the same behaviour for all sets of parameters, that
consists in a sole stable solution for values below the bifurcation, and two symmetric stable
solutions out of the apex plus an unstable solution at se = L/2 beyond the bifurcation point.
However, Figure 4.3 (bottom panel) shows that for some set of parameters, the system does
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Figure 4.3: Solutions se of Equation (4.19) as a function of ρt/ρ0 (top panel), lt/L (middle
panel), and L/H (bottom panel). Solid lines correspond to stable solutions and dashed lines
to unstable ones. The thin vertical dashed lines correspond to the bifurcation values that have
been calculated by solving Equations (4.19) and (4.20) simultaneously and coincide with the
results in Equation (4.32) (top panel), Equation (4.33) (middle panel), and Equation (4.34)
(bottom panel).

not present the sL
e and sR

e equilibria when L varies so that sA
e is always stable (see solid

horizontal black line). Interestingly, the bottom panel of Figure 4.3 shows that for small
changes of ρt, s

L
e and sR

e vary significantly. Moreover, we see that the bifurcation length Lb

for ρt/ρ0 = 133 and ρt/ρ0 = 138 is short, around Lb = 2.7H and Lb = 1.4H, respectively.
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These values are shorter than the typical magnetic tube observations.

More aspects about the bifurcation values and how to calculate them are given in Section 4.4.
But it is interesting to finish this section by analysing the presented results from a dynamical
systems perspective. The transition from one stable equilibrium solution to two symmetric
stable solutions and one unstable solution is characteristic of the supercritical pitchfork
bifurcation, see for example Section 3.4 of Strogatz (2018) or Section 20.1E of Wiggins (2003).
This bifurcation is present in systems that have a symmetry, such as the one between the
left and right sides of our magnetic tube when the thread is initially at the tube apex. In
Figure 4.3 we find the same type of pitchfork bifurcation in the three panels (although in the
bottom panel the unstable solutions, pink and orange curves, are overplotted by the stable
one, black curve).

4.3.2 Thread initially at any location along the tube

It is straight forward to derive analytical expressions for the situation of a thread initially
located at any position along the tube, denoted by s0, and not necessarily at L/2 as discussed
in the previous section. We simply need to rewrite Equation (4.15) as

p1(s) = p0

(
s0 − lt/2
s− lt/2

)γ
,

p2(s) = p0

(
L− s0 − lt/2
L− s− lt/2

)γ
, (4.22)

and the corresponding equilibrium equation analogous to Equation (4.19) is now,(
L− s0 − lt/2
L− s− lt/2

)γ
−
(
s0 − lt/2
s− lt/2

)γ
= − γ

c2s0

ρt
ρ0
g lt cos

(
π
s

L

)
. (4.23)

Equation (4.23) simplifies to Equation (4.19) when s0 = L/2. Different types of representa-
tive solutions are shown in Figure 4.4 and in this case the parameter that has been chosen
to change is ρt (in Figure 4.2 it was lt). In these plots the initial position of the thread
is s0 = 0.4/L, therefore located on the left half section of the tube. The left-hand side of
Equation (4.23) is not symmetric anymore with respect to the tube apex, and this allows
the existence either of one, two or three solutions, according to Figure 4.4. But note that
by continuity there must be a situation in these circumstances with two solutions when the
left- and right-hand side curves are tangential. This case is calculated as in Section 4.3.1 by
imposing that the spatial derivatives of the left- and right-hand sides of Equation (4.23) are
equal,

(L− s0 − lt/2)γ

(L− s− lt/2)γ+1
+

(s0 − lt/2)γ

(s− lt/2)γ+1
=

1

c2s0

ρt
ρ0
g lt

π

L
sin
(
π
s

L

)
. (4.24)

So, Equation (4.24) has to be satisfied together with Equation (4.23) for the system to have
two equilibrium solutions. An example of such a situation is found in Figure 4.4 middle
panel. For simplicity, we still denote the equilibrium position at the left part of the tube
as sL

e , as sR
e at the right part, and as sA

e for the central near apex solution, so that when
the system has only two equilibrium solutions, sR

e = sA
e (or sL

e = sA
e ). As in Section 4.3.1
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Figure 4.4: Left- (black line) and right- (red line) hand sides of Equation (4.23) as a function
of s/L, for three different situations with one, two and three solutions. In these plots
s0 = 0.4/L (where the black line crosses zero), L = 10H, lt = L/50; ρt/ρ0 = 100 (top panel),
ρt/ρ0 = ρtb/ρ0 (middle panel), and ρt/ρ0 = 200 (bottom panel). The value ρtb/ρ0 ≈ 137.28
is obtained from Equations (4.23) and (4.24). The vertical dashed lines represent the edges
of the domain of the variable s, namely s = lt/2 and s = L− lt/2.

the sign of the difference between the left-hand side term and the right-hand side term of
Equation (4.24) reveals the nature of the different solutions.

Now in the bifurcation diagram we find that the characteristic pitchfork for the symmetric
case disconnects into two curves, one below s0/L = 0.5 and another one above this value.
An example is shown in Figure 4.5 (top panel) when the density contrast is changed. The
lower curve is always stable, whereas the upper curve has both stable and unstable branches.
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Figure 4.5: Same as Figure 4.3 but for Equation (4.23) and for different values of s0/L. The
bifurcation points (intersections between vertical and horizontal thin dashed lines) have been
calculated by solving Equations (4.23) and (4.24) simultaneously.

Therefore, the pitchfork bifurcation occurring in the symmetrical case is essentially replaced
in the non-symmetrical case by a stable state (lower curve) alongside with a saddle-node
bifurcation (upper curve). As we increase the density contrast there is no longer a sharp
transition at the bifurcation point representative of the symmetric case (compare with Fig-
ure 4.3). Hence, the equilibrium position of the thread varies smoothly with the density
contrast on the lower stable curve. Furthermore, the stable branch of the upper curve,
which is also a permitted equilibrium state of the system, is not accessible unless the thread
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is given a large initial disturbance making this equilibrium more favourable. Qualitatively
similar results are obtained for the bifurcation diagrams as a function of the thread length
and the total length, see Figure 4.5 middle and bottom panels, respectively. As was ex-
pected, when s0/L tends to 0.5, the diagrams tend to those in Figure 4.3, characterised by
an stable solution at se/L = 0.5 below the bifurcation values (see lower purple solid line
in the top and middle panels), however, we see that the two curves (upper and lower) still
remain disconnected for s0/L = 0.49.
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Figure 4.6: Solutions se of Equation (4.23) as a function of s0/L for ρt/ρ0 = 200 (orange
lines) and ρt/ρ0 = 400 (black lines). L = 10H and lt = L/50. The curves correspond to sL

e

and sR
e (solid lines), and sA

e (dashed line). The bifurcation points around s0/L = 0.3 and
s0/L = 0.7 (intersections between vertical and horizontal orange dashed lines) have been
calculated by solving Equations (4.23) and (4.24) simultaneously.

Figure 4.6 shows the situation when there is a transition between one to three solutions
(orange lines, ρt/ρ0 = 200) when the initial position of the thread, s0, is changed. One of
the emerging solutions around s0/L = 0.3, sA

e , is unstable, while the other solution, sR
e ,

is stable. This behaviour is similar to that found for the symmetric case with s0 = L/2
described earlier. In Figure 4.6 a case with no bifurcations but with multiple solutions for
fixed parameter values (black lines, ρt/ρ0 = 400) is also represented. The solutions that are
around the apex (dashed curves) have a different behaviour with respect to the left and right
part solutions. In this case sA

e decreases when s0 is raised, while for the other two solutions
sL
e and sR

e increase with s0. When s0 tends to the tube apex, sA
e tends precisely to se = L/2

and this solution is unstable. In conclusion, given that the initial thread position, s0, is not
at the apex, this parameter breaks the symmetry of the system. In bifurcation theory it
is called an imperfection parameter. The resulting bifurcation diagram of Figure 4.6 is no
longer symmetric about a horizontal line and possesses an S-shape, see Wang (1994) and
Section 3.6 of Strogatz (2018). The orange curve in this figure has a lower and an upper
bifurcation point, s0,l/L ' 0.3 and s0,u/L ' 0.7, respectively. This S-shaped bifurcation
curve can be thought of as the composition of two saddle-node bifurcation curves (these sort
of bifurcations will appear in Chapter 5), the lower (upper) one with its bifurcation point at
s0 = s0,l (s0 = s0,u). The black curve of Figure 4.6 is a special case of S-shaped bifurcation
curve because the lower and upper bifurcation points are outside the range of validity of the
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parameter s0. Therefore, the system always supports three solutions.

4.4 Linear stability analysis

We have intuitively described the nature of stable and unstable solutions in the previous
section that has been complemented with known results from bifurcation theory in mathe-
matics. In the present section we provide a precise stability analysis based on linear theory
but using physical grounds. We derive an expression for the oscillatory frequency of the
thread, ω, as a function of the equilibrium parameters. The sign of ω2 renders estimable
knowledge about the stability properties of the configuration.

4.4.1 Thread initially at the tube apex

We start with the trivial solution at the tube apex. We consider a small longitudinal dis-
placement, δs, of the centre of the plasma thread. We assume that δs � L because we are
interested in the linear regime. The restoring forces acting on the plasma thread are the
pressure gradient and the projected gravity force. Let us write the pressure at both sides of
the thread as a function of the displacement with respect to L/2, the equilibrium position.
Using again the adiabatic assumption, the pressure on the left and right parts of the tube is

p1(δs) = p0

(
L/2− lt/2

L/2− lt/2 + δs

)γ
,

p2(δs) = p0

(
L/2− lt/2

L/2− lt/2− δs

)γ
. (4.25)

The terms in parenthesis are(
L/2− lt/2

L/2− lt/2± δs

)γ
=

(
1

1± 2δs/(L− lt)

)γ
= (1± 2δs/(L− lt))−γ

' 1∓ 2γδs/(L− lt), (4.26)

where in the last step we have used the Maclaurin series approximation for small arguments
(because δs/L � 1). This approximation is crucial to find the linear result we are looking
for, since pressure fluctuations are now linearly proportional to δs. We have that

p1(δs) ' p0 [1− 2γ δs/(L− lt)] ,
p2(δs) ' p0 [1 + 2γ δs/(L− lt)] , (4.27)

and the pressure gradient is

dp

ds
(δs) ' ∆p

∆s
(δs) =

p2 − p1
lt

=
4 p0 γ δs

lt (L− lt)
. (4.28)

For the projected gravity around s = L/2 it is not difficult to see that Equation (4.1) reduces
to a sinus of δs,

g‖(L/2 + δs) = g sin

(
π
δs

L

)
' g

π

L
δs, (4.29)
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where we have used again the approximation for small arguments in the last step.

We have expressions for all the terms that appear in the momentum equation, i.e. Equa-
tion (4.6) for s = L/2 + δs, which is now

ρt
d2δs

dt2
= − 4 p0 γ

lt (L− lt)
δs+ ρt g

π

L
δs = δs

[
− 4 p0 γ

lt(L− lt)
+ ρt g

π

L

]
. (4.30)

The right-hand side term of this equation is proportional to δs only. The solution to the
differential equation is of the form exp(iωt) and we have that

ω2 =
4 c2s0

lt (L− lt)ρt/ρ0
− g π

L
, (4.31)

where the sound speed of the background has been used. According to Equation (4.31) we
realise that we can have the following situations: ω2 > 0 (ω real) meaning that the motion is
purely oscillatory around a stable equilibrium, ω2 < 0 (ω purely imaginary) indicating that
the system is unstable, and ω2 = 0. This is the expected situation based on the results of
Section 4.3 about the equilibrium. Interestingly, it is not difficult to see that growth rates
and frequencies derived from the dispersion relation in Equation (4.31) are exactly the same
τ and ω found in Section 4.3.1 and derived from the mathematical point of view.

The transition between the two regimes (ω2 = 0) provides helpful information because it
corresponds to a bifurcation point, where, as we have seen, the number of solutions and/or
their stability can change. This transition takes place when the following condition for the
density contrast is satisfied,

ρtb/ρ0 =
4 c2s0 L

gπ lt (L− lt)
, (4.32)

density contrasts below this bifurcation value correspond to a stable solution, whereas for
ρt > ρtb the stable solution turns unstable. This behaviour is shown in Figure 4.7 (top panel)
where ω2 is plotted as a function of ρt/ρ0 for different values of L and for the three possible
equilibrium positions sA

e , sL
e , and sR

e . Since the initial position of the thread is at the apex
of the structure, sL

e and sR
e are symmetric and have the same frequency, so only one solid

curve with ω2 > 0 is visible to the right of the bifurcation point. Frequencies associated to
sA
e are found at the left of the bifurcation point and below zero in Figure 4.7. We see that

the bifurcation density, that delimits stable solutions (solid curves) with unstable (dashed
curves), does not strongly depend on L. This behaviour agrees with Equation (4.32) that

simplifies to ρtb/ρ0 =
4 c2s0
gπ lt

when lt is neglected with respect to L.

Assuming that ρt/ρ0 and L are fixed then we have a bifurcation length for the thread that
determines if the solution is stable or unstable,

ltb =
L

2

(
1−

√
1− 16 c2s0

gπ Lρt/ρ0

)
, (4.33)

(see middle panel of Figure 4.7). For typical prominence values the term inside the square
root is always positive and the square root of this term is smaller than one, providing a
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Figure 4.7: ω2 as a function of ρt/ρ0 (top panel), lt/L (middle panel), and L/H (bottom
panel) for se = sA

e (below bifurcation points and lower branch curves, Equation (4.31))
and se = sL

e = sR
e (upper branch curves, Equation (4.40)). In these plots s0 = L/2.

The bifurcation values (thin dashed vertical lines) have been calculated using the analytical
expressions given by Equations (4.32), (4.33), and (4.34).

physically acceptable value (ltb > 0). The equilibrium positions of threads with lengths
shorter than ltb are always stable.

Finally, from Equation (4.31) we find that the bifurcation length of the magnetic field lines
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is

Lb =
lt

1− 4 c2s0
gπ lt ρt/ρ0

, (4.34)

and the term in the denominator is not necessarily positive. A negative bifurcation length
is non-physical, meaning that in this situation it is not possible to find a transition from the
stable to the unstable regime. Therefore, when

4 c2s0
gπ lt ρt/ρ0

> 1, (4.35)

the bifurcation length is negative implying in our case that the solution is always stable
(ω2 > 0) independently of the length L (this is easy to check introducing the condition given
by Equation (4.35) into Equation (4.31)). Figure 4.7 (bottom panel) shows ω2 as a function
of L for different values of ρt and we find a case where Equation (4.35) is satisfied (black
solid curve) and ω2 is always positive. For values of the parameters that make the left-hand
side of Equation (4.35) less than one, the solution is either stable or unstable depending on
the length of the field lines, if L < Lb the system, that only develops sA

e , is stable, and if
L > Lb it is unstable (see lower branch curves in bottom panel of Figure 4.7). Interestingly,
the bifurcation length Lb depends strongly on the density contrast (see the short range of
ρt/ρ0 in Figure 4.7 bottom panel). Note that to have a stable solution the three criteria
(ρt < ρtb, lt < ltb, and L < Lb or equivalently Equation (4.35) for the length of the field
lines) must be simultaneously satisfied. This is an interesting result that provides useful
information about the behaviour of the system depending on the parameters.

It is worthly to note that the first term on the right-hand side of Equation (4.31) is the
frequency squared of a slow mode in a slab model of length lt inside a field line with a length
of L (Joarder & Roberts 1992b; Dı́az et al. 2010; Soler et al. 2010). Interestingly, Luna et al.
(2012a) derived a similar expression for the frequency but for a magnetic field with a dip
at the location of the thread. In their formula the sign in front of the gravitational term
is positive and therefore the instability is not present in their configuration, their system is
always (linearly) stable because they consider a concave upwards geometry for the magnetic
field.

Now we generalise the frequency of oscillation for any equilibrium position, se, along the
tube and hence we do not restrict to the equilibrium solution at the tube apex. But note
that the thread is still initially located at s = L/2. Under these conditions we have that

p1(δs) = p10

(
se − lt/2

se − lt/2 + δs

)γ
,

p2(δs) = p20

(
se − lt/2

L− se − lt/2− δs

)γ
, (4.36)

where p10 and p20 correspond to the equilibrium pressures that satisfy Equation (4.15). We
rewrite p1 as

p1(δs) ' p10 [1− γδs/(se − lt/2)] , (4.37)
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where we have used the Maclaurin series approximation for small arguments but note that
if se is similar to lt/2 the approximation is not valid. An analogous expression is derived for
p2. The pressure gradient using the previous equations is approximated by

dp

ds
(δs) ' p2(δs)− p1(δs)

lt
=

1

lt

(
p20 − p10 +

p20 γ δs

L− se − lt/2
+

p10 γ δs

se − lt/2

)
. (4.38)

For the projected gravity we need to perform a Taylor expansion of the cosine around the
equilibrium position which is now se,

cos
(
π
s

L

)
= cos

(
π
se
L

)
− π

L
sin
(
π
se
L

)
(s− se) + ..., (4.39)

where we only retain up to linear terms in s− se. We have that δs = s− se according to our
notation.

In the momentum equation, using Equations (4.38) and (4.39), we find two terms that are
not proportional to δs but that cancel because they correspond to the equilibrium condition
given by Equation (4.19). After some algebra it is not difficult to derive that the square of
the frequency is

ω2 =
c2s0

ltρt/ρ0

[
(L/2− lt/2)γ

(L− se − lt/2)γ+1
+

(L/2− lt/2)γ

(se − lt/2)γ+1

]
− g π

L
sin
(
π
se
L

)
. (4.40)

When se = L/2, i.e., the trivial solution, Equation (4.40) is exactly the same as Equa-
tion (4.31), recovering the previous situation. The solutions of Equation (4.40) are shown
in Figure 4.7. Below the bifurcation values ρtb, ltb, and Lb, the equilibrium solution is sA

e .
When the bifurcation values are reached, sA

e becomes unstable (ω2 < 0), and as expected,
sL
e is stable (ω2 > 0). For sR

e the value of frequency is exactly the same as that for sL
e and

therefore only one curve is visible in the plot. It is interesting to mention that for sL
e and

sR
e (upper branch curves) the frequency squared monotonically increases with ρt and lt, but

it increases with L until a maximum and then it starts decreasing with L. It is important
to mention that all the results shown in Figure 4.7 are the solutions of the configurations
shown in Figure 4.3 and the stability analysis done in Section 4.3.1 agrees with the results
in the present section.

4.4.2 Thread initially at any location along the tube

Finally, using the same procedure as before we derive an expression for the oscillation fre-
quency of a thread around the final equilibrium position se, that has been achieved from
an initial location of the thread at s0 6= L/2. The corresponding pressures at the edge of
the thread due to a small displacement δs from the equilibrium position are expressed as
Equation (4.36), but now p10 and p20 correspond to the equilibrium pressures that satisfy
Equation (4.22). Using similar approximations to those in Equation (4.37) and cancelling
the equilibrium terms according to Equation (4.23), we eventually find that the frequency
squared is

ω2 =
c2s0

ltρt/ρ0

[
(L− s0 − lt/2)γ

(L− se − lt/2)γ+1
+

(s0 − lt/2)γ

(se − lt/2)γ+1

]
− g π

L
sin
(
π
se
L

)
. (4.41)
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Figure 4.8: ω2 as function of different equilibrium parameters (Equation (4.41)) for three
initial positions of the thread, when its initial position is not at the magnetic tube apex. The
vertical lines correspond to the bifurcation points and are calculated imposing that ω2 = 0.

The previous frequency expressions given in Equation (4.31) when s0 = se = L/2 and
Equation (4.40) when s0 = L/2, se 6= L/2 are recovered in Equation (4.41). In this equation
se must be a solution to Equation (4.23). Obtaining analytical bifurcation values, except
for the trivial case (s0 = se = L/2), is much more difficult now and it is only possible for
the bifurcation density contrast. The rest of bifurcation values are determined numerically.
As expected from bifurcation theory, imposing the condition for a bifurcation value, i.e.,
ω2 = 0 in Equation (4.41), is completely equivalent to the condition given by Equation (4.24)
that determines the bifurcation point based only on the equilibrium configuration. This is
confirmed by the comparison of the bifurcation values in Figure 4.8 and the respective results
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in Figure 4.5. This is also a solid indication that the performed eigenfrequency analysis in
this section is coherent.
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Figure 4.9: ω2 as a function of s0/L (Equation (4.41)) for the three solutions obtained
in Figure 4.6. The solid lines correspond to sL

e (lines decreasing from left to right) and
sR
e (lines increasing from left to right), and the dashed lines to sA

e . The horizontal line
represents ω = 0 and divides the plot into stable and unstable solutions. In this plot the
left and right solutions are stable while the near apex solution is unstable. The bifurcation
points (vertical dashed lines) have been calculated by solving Equations (4.23) and (4.24)
simultaneously, and it is equivalent to impose ω2 = 0 in Equation (4.41) once se is known.

Now, the break of symmetry due to the imperfection parameter s0 causes the difference
between the frequency squared of sL

e and sR
e . This is visible in the plotted upper curves

of Figure 4.8 (solid curves). Beyond the bifurcation values two branches corresponding to
sR
e and sA

e appear, being positive for sR
e (solid curves) and negative for sA

e (dashed curves).
Logically, when s0/L tends to 0.5 (purple curves), ω2 for sR

e tends to the same value as for
sL
e . For sR

e (emerging at the bifurcation point), ω2 increases with ρt/ρ0 (top panel) and
lt/H (middle panel). For sL

e , stable in the whole parameter range, ω2 decreases with ρt/ρ0
and lt/H until it reaches a minimum located before the bifurcation point from where it
starts increasing. On the contrary, in the bottom panel of Figure 4.8 we see that for sL

e the
frequency decreases for large values of L.

In Figure 4.9 the three square of the frequencies corresponding to the solutions in Figure 4.6
are plotted as a function of the initial position of the thread, s0. To calculate these frequencies
the values of se that satisfy Equation (4.23) have been used. It is interesting to see that sL

e

and sR
e are always stable while sA

e is always unstable. As expected from physical grounds
the left and right side solutions converge to the same value when there is symmetry in the
system, i.e., for s0 = L/2 (note that beyond this point the meaning of sL

e and sR
e has to

be inverted). We also observe the transition between one and three solutions for a specific
choice of parameters (ρt/ρ0 = 200, orange curves). At the bifurcation point two solutions
emerge from ω = 0, one representing a stable solution (sR

e ) and another one corresponding
to an unstable solution (sA

e ). We also see that ω2 significantly varies with s0/L for stable
solutions but it is essentially independent of s0/L for unstable solutions.
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4.5 Conclusions and discussion

The thread-like structures studied in this work appear to be present in filaments everywhere
(Lin et al. 2008), along the horizontal spines or the quasi-vertical barbs. High-resolution
observations of the solar corona show that the fine structure of prominences is very dynamic.
Even during the prominence formation we observe plasma flows along the magnetic fields.
The localised heating above the flux tube footpoints produces a cyclic pattern of evaporation
of the chromospheric plasma, which condenses in the coronal part of the tube and produces
the plasma flows. During the process, the pressure imbalance between the chromosphere
and the condensation region would push upwards the chromospheric plasma to supply mass
to the corona in the form of siphon flows (Xia et al. 2011; Zhou et al. 2014) In spite of
the complicated dynamics of prominence threads, it is interesting to perform the stability
analysis of these structures. For this reason, we have developed a very idealised model that
provides the basic physics to understand the evolution of a density enhancement or thread
that moves along a curved concave magnetic field, a very common situation in the solar
corona. The main assumption in the model is that the behaviour of the thread is essentially
that of a piston that in our case is governed by gas pressure and gravity. Our model allows
the existence of a suspended mass in the absence of magnetic dips.

We have derived two equations for the equilibrium of a thread initially located at any position
along the tube (Equation (4.23)) and the corresponding eigenfrequency of oscillation (Equa-
tion (4.41)) that have revealed useful knowledge about the stability properties of the system.
In spite of the simplicity of our model the equilibrium equation is quite rich from the math-
ematical point of view and leads to significant physical interpretations. Different scenarios
are possible, a density enhancement initially located at the apex is always in equilibrium
in our model but this equilibrium is either stable or unstable. We have derived analytical
expressions for the bifurcation values of the different parameters when a transition between
a stable and unstable regime is produced. If the thread near the apex is unstable then the
system allows two additional symmetric equilibria at lower heights that are stable. Under
these circumstances a thread situated at the apex of the tube will move along the magnetic
field until it reaches the lower state energy associated to the new equilibrium. When the
density enhancement is not initially at the apex we have in essence a similar behaviour: a
single stable solution or three solutions, two of them stable and the other unstable. In this
last case, the mathematical behaviour of the system is characterised by the appearance of a
S-shaped bifurcation, well known in bifurcation theory.

Our analysis reveals the presence of bifurcation points, obtained analytically when the thread
is initially located at the apex. For example, when the condition given by Equation (4.35) is
satisfied, the system is stable, independently of the length of the magnetic field lines where
the thread is suspended. Otherwise, a thread with a fixed density contrast and length, can be
stable when it is located along short magnetic field lines but unstable on long magnetic field
lines, i.e., higher up in the magnetic arcade. This can have some implications regarding the
finite height of observed solar prominences but also concerning the stability of unbounded
models with height like those of Hood & Anzer (1990). However, the presence of magnetic
dips, missing in our model, can have important consequences regarding stability.

The length of the magnetic tubes plays a key role in the equilibrium and stability of the
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threads. The physical interpretation of the dependence of the instability on the length of the
field lines can be connected with the travel time of sound waves (pressure restoring timescale)
from the thread to the footpoints and the return time due to the reflection produced by the
line-tying condition. A small lateral displacement of the thread induces a pressure wave
whose total travel time depends on the length of the magnetic field line. On short magnetic
field lines the pressure will be adjusted quickly, while for long field lines it is possible that
the regulation of the pressure is not fast enough to maintain the thread around its initial
equilibrium state before it has reached a high enough velocity that sends it to another
equilibrium position.

A natural extension of the model presented here is the inclusion of magnetic dips through
the straight forward modification of the projected gravity along the field. This will have
most likely relevant consequences regarding stability and will affect the eventual bifurcation
points that may appear in the system. This work is addressed in Chapter 5 as a continuation
of the present chapter. Another future improvement to the model is the implementation of
the variation of the cross-sectional area along the tube, allowing to incorporate a truly 3D
effect in the calculation of the equilibrium and the corresponding eigenfrequencies (see Luna
et al. 2016a).

An et al. (1988); Wu et al. (1990) investigated the effects of plasma injection on the formation
of Kippenhahn-Schlüter model of prominence in optimum conditions. They found that for
high values of the plasma-β parameter (the ratio of plasma pressure to magnetic pressure)
the magnetic arcade develops a magnetic dip at the centre of the structure that supports
the prominence plasma. However, comparing with our study, in the low plasma-β regime
(or under others injection conditions) they found that the dip is less deep and the system
develops two additional plasma enhancements located at the lateral edges of the magnetic
arcade. It is interesting to mention that in recent works, it is suggested that the deformation
of the magnetic field lines is determined by the parameter δ (the ratio of the gravity to the
magnetic pressure) (Zhou et al. 2018; Zhang et al. 2019). An et al. (1988) suggested that
the steady lateral plasma accumulates because of both the injection process and because the
field lines do not geometrically contain the injected plasma, but Wu et al. (1990) proposed
that the prominence mass is also supported by an increase in the pressure gradient. Since
in this study we consider that magnetic field lines do not change due to the presence of the
dense thread we will investigate in detail the results of An et al. (1988); Wu et al. (1990)
in the next chapter. On the contrary, Zhang et al. (2013) investigated the formation of
one-dimensional filament threads by chromospheric heating in the presence of non-adiabatic
effects, i.e., radiative losses and thermal conduction. They obtained that for magnetic loops
without a dip, the plasma condenses but it streams along the magnetic field and disappears
after falling to the footpoints (Antiochos et al. 2000; Karpen et al. 2006). Moreover, when
the thread is initially in a thermal and force-balance equilibrium state but it is disturbed
by a strong velocity perturbation, the prominence mass drains down to the chromosphere.
Dense blobs of falling plasma have been habitually observed (Schrijver 2001; de Groof et al.
2005) so that it seems that threads cannot be held static along vertical magnetic flux tubes
in the corona. The coronal part of the tube can only slow down the falling blobs. Müller
et al. (2004) proposed that the acceleration reduces because the pressure of the cooling
plasma underneath the radiating blobs slows down the descent, and Oliver et al. (2014,
2016) and Mart́ınez-Gómez et al. (2020) argued that pressure gradient is the main force

105



4.5. CONCLUSIONS AND DISCUSSION

that opposes the action of gravity. Our study proposes that the pressure gradient can cause
the equilibrium of threads in quasi-vertical flux tubes without dips even though it has not
been corroborated by observations. Regardless, our model is relatively simple to study the
observed down-flows, and other mechanisms such as radiation and heat conduction must be
considered.

Our model also demonstrates that when the mass of the thread is high enough the position
of the equilibrium is near the footpoints. This allows us to constrain the parameters to
find solutions that do not represent suspended threads but correspond to threads that travel
down the tube until they essentially settle down into a new equilibrium around the base
of the corona. This last situation is applicable, for example, to coronal rain falling along
magnetic field lines. In this regard, our study can be relevant to explain some results of
2D and 2.5D numerical simulations of dense blobs released in the solar atmosphere (e.g.
Mackay & Galsgaard 2001; Kohutova & Verwichte 2017a,b). These simulations have in
common with our work a dense blob (akin to our thread) that is released in a gravitationally
stratified background atmosphere with a closed bottom boundary at the base of the corona.
This setup allows the dense material falling along the magnetic tube to act as a piston. For
this reason, Mackay & Galsgaard (2001) and Kohutova & Verwichte (2017a,b) find, as we
do, that when the blob density is large enough this cold material falls down to the surface
because the increased pressure that builds underneath it cannot counteract the blob weight.
On the contrary, blobs with smaller mass can find an equilibrium position before reaching
the surface and so they oscillate around this position. In addition to the relevance of the
blob density, ρt, we have also noted that the length of magnetic field lines and the blob
length are important parameters that control the system dynamics.
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Chapter 5

Curved magnetic fields with dips 3

5.1 Introduction

In Chapter 4 we have investigated the gravitational instability of a curved magnetic field
without dips. We have found that the line-tying effect at the photosphere produces a pressure
increment along the magnetic field lines that sustains the prominence mass at different
equilibrium points, even in the absence of magnetic dips. The instability of the system was
analysed by both linear stability analysis and bifurcation theory. A parametric survey was
carried out to understand the occurrence of stable/unstable regimes.

Most of the magnetic models of prominences consider that plasma is hosted by a magnetic
dip (e.g., Hillier & van Ballegooijen 2013). For this reason, in this final chapter of the Thesis,
we extend the findings of Chapter 4 by introducing a magnetic dip into the curved flux tube
model. Moreover, we apply a different approach in the gravity term to derive an equilibrium
equation based on the average gravity on the thread which is more realistic. Finally, we
study the equilibrium and stability of this new thread model with a dip that is shifted with
respect to the apex of the structure.

5.2 Model and equations

5.2.1 Basic model

We model the magnetic flux tube as three curved segments: two lateral concave downwards
circles with a radius of RL < 0 and arc lengths of s1 = s2 = L/2 − ld/2, and a curved dip
with a radius of Rd = Rd(s) and length ld (see top panel of Figure 5.1). In this model s
is the coordinate along the tube, starting from the left foot, while L is the total length of
the magnetic tube. We start with the description of a magnetic structure that is symmetric
around the midpoint located at s = L/2. For a symmetric tube the bottom of the dip
coincides with the midpoint. We assume that the cross-section of the tube is constant. The
shape of the structure is determined by the definition of the projected gravity along the

3This chapter is based on: Adrover-González, A., Terradas, J., Oliver, R., Carbonell, M.; Gravitational
instability of solar prominence threads: II. Curved magnetic fields with dips, in preparation.
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Figure 5.1: Top panel: Sketch of the magnetic structure and the prominence thread for a
total tube length L = 10H and a dip length ld = 2H. The thread length is lt = 0.5H. The
radius of the two lateral circles is RL = −(L − ld)/π. s is the coordinate along the tube,
starting from the left foot. Spatial dimensions are scaled to H = 10 Mm. Bottom panel:
Same as top panel but for a non-symmetric dip. We include a vertical leg of length h at the
right foot.

magnetic field line, expressed as follows:

g‖(s) =


−g cos

(
π s
L−ld

)
0 < s < s1,

g ld
2 (L−ld)

sin
(

2π s−s1
ld

)
s1 < s < s1 + ld,

g sin
(
π s−s1−ld

L−ld

)
s1 + ld < s < L,

(5.1)

with g = 0.274 km s−2 being the gravity acceleration. The expression of the gravity is defined
to have its derivative continuous at the borders of the dip, s = L/2± ld/2, i.e.,

g′‖(s) =


g π
L−ld

sin
(
π s
L−ld

)
0 < s < s1,

g π
L−ld

cos
(

2π s−s1
ld

)
s1 < s < s1 + ld,

g π
L−ld

cos
(
π s−s1−ld

L−ld

)
s1 + ld < s < L.

(5.2)

Under this condition, the radius for the external segments of the tube is RL = − (L− ld) /π.
If s is the distance along the loop from the left foot, then the lateral extension, x(s), and
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the height of the structure, y(s), are given by

dx = sinφ ds (5.3)

and

dy = − cosφ ds, (5.4)

being φ the angle of the slope of the magnetic structure. φ can be expressed in terms of the
projected gravity along the tube as

g‖(s) = g cosφ. (5.5)

Introducing Equation (5.5) into Equations (5.3) and (5.4), and integrating along the dip we
obtain an expression for x(s) and y(s) in terms of the gravity profile,

∫ x

RL

dx =

∫ s

s1

√
1−

(
g‖(s)

g

)2

ds, (5.6)

∫ y

RL

dy = −
∫ s

s1

g‖(s)

g
ds. (5.7)

The radius of the dip as a function of s can be derived directly from x(s) and y(s) according
to

Rd(s) =

[(
dx
ds

)2
+
(
dy
ds

)2]3/2
dx
ds

d2y
ds2
− dy

ds
d2x
ds2

. (5.8)

We are interested in obtaining the radius of the dip at the midpoint of the structure. After
some calculations we obtain that

Rd(s = L/2) =
L− ld
π

= −RL. (5.9)

This means that the radius of curvature at the bottom of the dip coincides with the radius of
the two lateral circular segments but for opposed sign. Moreover, we can obtain an expression
for a minimum tube length (Lmin) when ld is fixed, imposing that y(s = L/2) = 0,

Lmin =

(
1 +

1√
2

)
ld. (5.10)

On the other hand, when we set L, we obtain that the maximum dip length is

ldmax =
(

2−
√

2
)
L. (5.11)

The expression for the gravity is equivalent to Equation (4) of Zhang et al. (2013) when we

define the depth of the dip as D = |RL|− y(s = L/2) =
l2d

2π (L−ld)
. Unlike Zhang et al. (2013),

we do not have the vertical legs of their model.
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Figure 5.2: Gravity profile (top panels) and derivative of gravity profile (bottom panels) for
L = 10H. lt = 1H and ld = 2H (lt < ld) in left column; lt = 3H and ld = 2H (lt > ld)
in the right column. The black curves correspond to Equations (5.1) and (5.2), respectively.
The red curves correspond to the average gravity (Equations (5.12) and (5.13)). Note the
discontinuity in the derivative of the average gravity.

Since the thread has a finite length, gravity changes along it, and under the presence of dips
it is more convenient to use the average gravity on the thread already introduced in the
previous chapter,

ḡ‖(s) =
1

lt

∫ s+lt/2

s−lt/2
g‖(s)ds

=


−2 g (L−ld)

π lt
cos
(
π s
L−ld

)
sin
(
π
2

lt
L−ld

)
0 < s < s1,

g l2d
2π lt (L−ld)

sin
(

2π s−s1
ld

)
sin
(
π lt
ld

)
s1 < s < s1 + ld,

2 g (L−ld)
π lt

sin
(
π s−s1−ld

L−ld

)
sin
(
π
2

lt
L−ld

)
s1 + ld < s < L,

(5.12)

being its derivative

ḡ′‖(s) =


2 g
lt

sin
(
π s
L−ld

)
sin
(
π
2

lt
L−ld

)
0 < s < s1,

g ld
lt (L−ld)

cos
(

2π s−s1
ld

)
sin
(
π lt
ld

)
s1 < s < s1 + ld,

2 g
lt

cos
(
π s−s1−ld

L−ld

)
sin
(
π
2

lt
L−ld

)
s1 + ld < s < L.

(5.13)
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lt is the longitude of the thread. In Chapter 4 it has been shown that the differences
between the average gravity and the local gravity are very small because the geometry of
the field is very smooth. However, the presence of a dip in the structure enhances the
differences between these two magnitudes. When lt � ld � L, Equation (5.12) reduces
to Equation (5.1) and Equations (5.9) - (5.11) are valid approximations. However, when
lt ≥ ld, the behaviour of the structure around the dip will change significantly so that it is
convenient to study the cases lt < ld and lt > ld separately. Figure 5.2 shows the gravity
profile (top panels) and its derivative (bottom panels) for lt < ld (left column) and lt > ld
(right column), respectively. The black curves correspond to the local gravity projected along
the magnetic field line (Equations (5.1) and (5.2)) while the red curves represent the average
gravity (Equations (5.12) and (5.13)). The local gravity and its derivative do not depend on
the thread length so that the black curves are the same in both figures. According to their
definitions, g‖(s) and g′‖(s) are continuous functions. However, when we average g‖(s) on

the thread, we see that ḡ‖(s) remains continuous but ḡ′‖(s) develops a discontinuity at the
borders of the dip. The jump grows when lt increases. We see that at the lateral edges of
the loop g‖(s) and g′‖(s) strongly match with ḡ‖(s) and ḡ′‖(s), respectively, but differ at the
dip. A second important feature of the average gravity is that at the centre of the structure,
when lt > ld, ḡ′‖(s) can be positive (as in the right bottom panel of Figure 5.2). This fact
has important consequences regarding the gravitational stability of the equilibrium points
since this change in sign can invert the stability of the system. The sign of ḡ′‖(s = L/2)

oscillates depending on the sign of the term sin
(
π lt
ld

)
in Equation (5.13). When lt = n ld

(n = 1, 2, 3 · · · ) the average gravity along the dip is zero.

5.2.2 Equilibrium equation

In Chapter 4 we obtained two expressions for the equilibrium equation, one for s0 = L/2
representing a thread initially located at the centre of the dip, and another expression for
s0 6= L/2 for a shifted thread (see Equations (4.19) and (4.23), respectively). We do not
repeat the derivation here. The general expression for the equilibrium points is(

L− s0 − lt/2
L− s− lt/2

)γ
−
(
s0 − lt/2
s− lt/2

)γ
=

γ

c2s0

ρt
ρ0
lt ḡ‖(s), (5.14)

where s0 and ρt are the initial position and the density of the thread, respectively. ρ0 and
cs0 correspond to the density and the sound speed at the coronal part s = L/2 − lt/2, and
γ is the adiabatic index. Solving Equation (5.14) we obtain the equilibrium points s = se.
Note that the equilibrium equation is expressed in terms of the average gravity now. As in
the previous chapter we have assumed that the evolution of the thread during the motion
is adiabatic and that the geometry of the loop is not modified by the presence of the dense
plasma. Thus, the problem is reduced to a one dimensional model and therefore only forces
along the flux tube are taken into account.

Figure 5.3 shows the left- (black curve) and right- (red curve) hand sides of Equation (5.14)
as a function of s/L for s0/L = 0.5, L = 10H, ρt/ρ0 = 200, and lt = 0.2H, when the dip
length is ld = 2H. Now we see that the system develops five possible equilibrium points (see
circles) instead of the three possible solutions in the absence of a dip. As we explained in
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Chapter 4, we can anticipate that the system develops bifurcation points. We remind that
the bifurcation points are calculated by imposing that the spatial derivatives of the left- and
right-hand sides of Equation (5.14) are equal,

(L− s0 − lt/2)γ

(L− s− lt/2)γ+1 +
(s0 − lt/2)γ

(s− lt/2)γ+1 =
lt
c2s0

ρt
ρ0
ḡ′‖(s). (5.15)

We know that when s0 = L/2 the structure of the system is symmetric about the midpoint
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Figure 5.3: Left- (black curve) and right- (red curve) hand sides of Equation (5.14) as a
function of s/L for s0/L = 0.5, L = 10H, ρt/ρ0 = 200, and lt = 0.2H. The length of the
magnetic dip is ld = 2H. The vertical dashed lines represent the edges of the domain for
the variable s, namely s = lt/2 and s = L− lt/2. The filled area delimits the magnetic dip.

so that the equilibrium points are also left-right symmetric. In this case we obtain that the
system develops an equilibrium point at the centre of the structure, or in other words, at
the bottom of the dip. Unlike Chapter 4, now we will see that this solution is always stable
when lt < ld. The rest of solutions are located at the lateral sides of the flux tube, out of
the dip. The four lateral fixed points are distributed in two pairs, one pair at each side of
the tube. We will obtain that each pair of solutions has one stable and one unstable fixed
point, with the one located at lower heights being stable. Now we imagine that we increase
or decrease one of the following parameters of the structure: L, lt, ρt, or ld. The left- and
right-hand side curves of Figure 5.3 slide past each other and the fixed points approach or
separate each other. At some point the left-hand curve becomes tangent to the right-hand
curve and the lateral equilibrium points merges in a bifurcation point, creating or destroying
solutions. At this point the system only develops three solutions, the central one and the two
lateral ones that vanish as soon as the bifurcation point is overtaken. When these solutions
are destroyed, the system only holds the central solution up, that exists for all values of the
parameters. The last parameter we can vary is the initial position of the thread s0. The
behaviour of the system changes according to the location of s0 with respect to the dip.
Thus, we can study four possible scenarios: when the initial thread position is located at
the centre of the structure (Figure 5.3), when it is shifted with respect to the centre but is
still inside the dip, when it is placed at the border of the dip, and finally, when it is located
outside the dip. A detailed analysis of the instability of the equilibrium points as a function
of the parameters of the structure is given in Sections 5.3 and 5.4.
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5.2.3 Frequency equation

In Section 4.4 we performed a stability analysis based on linear theory and we derived
an expression for the oscillatory frequency of the fixed points of the thread as a function
of the equilibrium parameters. Specifically we obtained three formulas starting from the
simplest case s0 = se = L/2 and generalising first to se 6= L/2 and finally to s0 6= L/2 (see
Equations (4.31), (4.40), and (4.41), respectively). For the general case we obtain that the
square of the frequency is

ω2 =
c2s0

lt ρt/ρ0

[
(L− s0 − lt/2)γ

(L− se − lt/2)γ+1
+

(s0 − lt/2)γ

(se − lt/2)γ+1

]
− ḡ′‖(s = se), (5.16)

expressed in terms of the average gravity now. It is not difficult to see that for lt � ld and
s0 = se = L/2, the frequency squared reduces to

ω2 =
4 c2s0

lt (L− lt) ρt/ρ0
+

g π

L− ld

=
4 c2s0

lt (L− lt) ρt/ρ0
+

g

|RL|
. (5.17)

Equation (5.17) is the same expression as Equation (25) of Luna et al. (2012a), considering
that they defined L as the half of the total length of the structure and lt the half of the
thread length, and knowing that in our study ρt/ρ0 is the density contrast at the corona-
thread interface initially located at s = L/2−lt/2. Equation (5.17) is always positive for valid
values of the parameters, i.e. L > lt, so that we obtain that for s0/L = se/L = 0.5 the fixed
point is always stable when lt < ld. Another significant aspect of the derivative of the average
gravity (for lt < ld), Equation (5.13), is that ḡ′‖(s) < 0 for L/2− ld/4 < s < L/2 + ld/4 and

ḡ′‖(s) > 0 anywhere else. Consequently, while the fixed point se ranges between L/2± ld/4,

ω2 will always be positive since the first term of the right-hand side of Equation (5.16) is
always grater than zero. This means that equilibrium points located around the centre of
the magnetic field line, i.e., around the bottom of the dip, are always stable, independently
of the parameters of the structure. This is different to the results without dips presented in
Chapter 4. We obtained that for equilibrium points located at the apex of the loop when
s0 = L/2, ω2 could be positive or negative depending on the parameters of the structure.
Imagine that we have a configuration without dips that develops an unstable fixed point at
se = L/2 (see dashed curves of Figure 4.3). If the loop develops a central dip, according to
Equation (5.17), the fixed point at the apex would automatically change to stable, without
any type of transition. However, if we use the average gravity it results that, when lt > ld,
ḡ′‖(s = L/2) can be positive so that from Equation (5.16) we obtain that ω2 can be negative
and the fixed point would preserve the condition of being unstable.

5.3 Equilibrium and frequency analysis for a

symmetric dip

To study the equilibrium of a thread embedded in a curved magnetic field with dips we have
to solve Equation (5.14). We distinguish between the two cases lt � ld and lt � ld. First, we
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carry out the study for a symmetric dip (see top panel of Figure 5.1). Then in Section 5.4,
we analyse the case for a non-symmetric dip (see bottom panel of Figure 5.1).

5.3.1 Case lt � ld

In Section 5.2 we briefly described how the equilibrium points behave when the initial position
of the thread is located at the centre of the symmetric dip. However, if we shift s0 along
the flux tube, the symmetry around s = L/2 is lost and the distribution of the fixed points
changes. In general, we find that different equilibrium points can be created or destroyed, or
their stability can change depending on the parameters of the structure. These changes in
the dynamics of the system occur at the bifurcation points (see Section 3 of Strogatz 2018).
To understand the gravitational instability of our model we construct bifurcation diagrams
that represent the equilibrium points of the system (se) as a function of a parameter of the
structure. Since not all of the fixed points exist for all parameter values, we have to obtain
the parameter range computing the bifurcation points by solving Equations (5.14) and (5.15)
simultaneously. To label the bifurcation points in the text we use the subscript b and a thin
dashed vertical line in the different bifurcation diagrams. To distinguish between stable and
unstable fixed points we use a solid line for stable points and a dashed line for unstable ones.
Furthermore, in the diagrams we draw the borders of the magnetic dip as thin dotted lines.

Figure 5.4 shows se/L as a function of ρt/ρ0 when the initial position of the thread changes.
As we previously explained, four different cases are analysed and all of them show a different
behaviour. For s0/L = 0.5 (top panel, black curves) we see that the solution at the centre
of the dip is valid for all values of ρt and, in contrast to the case without dip, it is always
stable now (solid line). As ρt increases, when ρt > ρtb, the system is able to create two
symmetric pair of solutions at the lateral sides of the tube. Beyond the bifurcation point
ρtb/ρ0 = 143, each pair of solutions splits into two branches, one stable (solid curve) and an
unstable one (dashed curve). This type of bifurcation is called saddle-node bifurcation and
it is the basic mechanism by which fixed points are created and destroyed (see Section 3.1
of Strogatz 2018). It is interesting that the inner branches (dashed lines), that are unstable,
never fall into the dip when ρt increases, as if the dip would act as a barrier. This constraint
causes an asymmetry between the two branches of each pair of solutions. This asymptotic
characteristic is explained imposing in Equation (5.14) that ρt tends to infinity. In this limit
we obtain five asymptotes: two at the limits of the structure s = lt/2 and s = L− lt/2; two
at the borders of the dip s = L/2 ± ld/2; and one at the midpoint s = L/2. We highlight
that in the range ρt > ρtb two qualitative different stable states coexist, namely the central
solution and the most external lateral fixed points. One consequence is that the central
solution is stable to small perturbations, but not to large ones, in this sense the centre of
the dip is locally stable, but not globally stable. A non-linear stability analysis is beyond
the scope of the present study but should be investigated in the future.

When s0/L = 0.45 (orange curves in top panel of Figure 5.4), the system still develops the 5
possible solutions, the central one located along the dip and two pairs of fixed points placed
one at each side of the tube. Since the system has lost the left-right symmetry, the two
saddle-node bifurcations occur at different bifurcation points, the left one at ρtb/ρ0 = 106
and the right one at ρtb/ρ0 = 181. As we expected, the central solution, that persists for
all values of ρt, tends to the bottom of the dip se/L = 0.5 when ρt/ρ0 increases. Moreover,
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Figure 5.4: Solutions of Equation (5.14) as a function of ρt/ρ0 for s0/L = 0.5 (black curves
top panel), s0/L = 0.45 (orange curves top panel), s0/L = 0.4 (purple curves bottom panel),
and s0/L = 0.35 (red curves bottom panel). L = 10H, lt = 0.2H, and ld = 2H. The
thin dashed vertical lines correspond to the bifurcation values that have been calculated
by solving Equations (5.14) and (5.15). The thin dotted horizontal lines correspond to the
limits of the dip.

as for s0/L = 0.5, we obtain that the inner branches never enter into the dip because of the
asymptotes. For s0 = L/2− ld/2 (bottom panel, purple curves) the system is characterised
by a saddle-node bifurcation plus a pitchfork bifurcation (see Section 20.1 of Wiggins 2003,
and Chapter 4), each of them with the corresponding bifurcation point. If we initially place
the thread at the left border of the dip, the saddle-node appears at the right side of the
tube. When the thread density is below the pitchfork point ρtb/ρ0 = 55, the only fixed point
is located at the left border of the thread and it is stable. For ρt = ρtb, se = L/2 − ld/2
remains as an equilibrium point, but two new fixed points are created now. In the process,
se = L/2 − ld/2 becomes unstable and the two emerged branches are stable. Finally, if we
shift the thread towards the left of the dip, in this case at s0/L = 0.35 (bottom panel, red
curves), the structure develops two saddle-nodes, one inside the dip, specifically restricted
by the asymptotes at the left half of the dip, and a second one at the right side of the tube;
plus a stable solution valid for all values of ρt located at the left side of the tube. It is
known in bifurcation theory that pitchfork bifurcations are common in problems that have
symmetry. When s0 = L/2 − ld/2 we have a certain symmetry around the left summit
of the structure and therefore the pitchfork bifurcation appears. However, this symmetry
is broken when the initial position of the thread moves from that point. We can say that
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s0 is an imperfection parameter (see Section 3.6 of Strogatz 2018, and Chapter 4). For
s0/L = 0.45 and s0/L = 0.35 we can consider that the pitchfork bifurcation of the bottom
panel disconnects into two pieces: the solitary branch consists entirely of stable fixed points,
whereas the pair of equilibrium points has both stable and unstable branches. This is called
an imperfect bifurcation.
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Figure 5.5: Solutions of Equation (5.14) as a function of L. Top panel: s0/L = 0.5 (black
curves) and s0/L = 0.5 − ld/(4L) (orange curves). Bottom panel: s0/L = 0.5 − ld/(2L)
(purple curves) and s0/L = 0.5 − 3 ld/(4L) (red curves). ρt/ρ0 = 250, lt = 0.2H, and
ld = 2H. The thin dashed vertical lines correspond to the bifurcation values that have been
calculated by solving Equations (5.14) and (5.15). The thin dotted curves correspond to the
limits of the dip.

The bifurcation diagrams of se as a function of lt (not shown here) are qualitatively the same
as those when we vary ρt (for lt � ld). However, the diagrams of se/L as a function of L,
displayed in Figure 5.5, show some peculiarities that must be explained. First, for a fixed ld,
the range of L has a minimum level (see Equation (5.10)), in particular for ld = 2H we find
that Lmin = 3.4H. In addition, the relative dip length ld/L varies with L (see thin dotted
curves of Figure 5.5), and so does s0/L. For this reason, we have to set s0 in terms of L.
In the top panel, for s0 = L/2 (black curves) and s0/L = 0.5− ld/(4L) (orange curves) the
behaviour of the bifurcation diagrams does not qualitatively change with respect to those in
top panel of Figure 5.4. However, when we initially place the thread at the left border of the
dip (s0/L = 0.5 − ld/(2L)) (bottom panel, purple curves) the saddle-node bifurcation that
appears in the se − ρt diagram is still present, but the pitchfork bifurcation is not created,
and the only bifurcation point is obtained at Lb = 8.7H. Now we have, besides the two
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fixed points of the bifurcation, three existing solutions that are valid for the whole range
of L: one stable (solid curve) inside the dip around the bottom of the dip se = L/2, one
unstable fixed point (dashed curve) that remains constant at the left border of the dip, and
a second stable solution (solid curve) located at the left side of the tube. For the fourth case
(s0 = L/2− 3 ld/(4L), bottom panel, red curves) the bifurcation diagram is more or less the
same as that for s0/L = 0.5 − ld/(2L), but now, the unstable solution that was located at
the border is shifted towards the dip.
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Figure 5.6: Top panel: Solutions se of Equation (5.14) as a function of s0/L for L = 10H,
lt = 0.2H, ld = 2H, and ρt/ρ0 = 250. The thin vertical dashed lines correspond to the
bifurcation points. Bottom panel: Three dimensional bifurcation diagrams of se as a function
of s0 and ρt. The other parameters are the same as those in top panel. The red curve denotes
the cusp density ρtc.

The transition between the four different scenarios is clearer when we plot se as a function
of the imperfection parameter s0 (top panel of Figure 5.6). We vary the initial position of
the thread from s0/L = 0.1 to s0/L = 0.9 so that we cover the two halves of the tube.
The transition between the case s0 < L/2 − ld/2 (red curves in Figures 5.4 and 5.5) and
s0 > L/2 − ld/2 (orange curves) takes place at s0 = L/2 − ld/2 (purple curves) where
the unstable fixed point inside the dip crosses the border towards the left side of the tube.
The bifurcation diagram is characterised by two S-shaped bifurcations (also called imperfect
bifurcations) that share one of the branches. For each S-shaped bifurcation, the middle
branch is unstable (dashed curve) and the upper and lower branches are stable (solid curves).
All the turning points of the S-shaped diagram, four in total, take place at the corresponding
bifurcation point. In Figure 5.6 (bottom panel) we plot a three dimensional diagram of se as
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a function of the two independent parameters s0 and ρt. We can see that when ρt decreases,
the bifurcation curves s0b(ρt) meet at s0b(ρtc)/L = 0.5± ld/(2L). ρtc (see red curve in the
bottom panel) is called a cusp point and it has been calculated by solving Equations (5.14)
and (5.15) simultaneously for s0/L = 0.5 ± ld/(2L). The cusp point ρtc/ρ0 = 55 coincides
with the pitchfork point of bottom panel of Figure 5.4. Below ρtc the system only develops
one fixed point independently of s0.
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Figure 5.7: ω2 as a function of ρt/ρ0. Top panel: s0/L = 0.5 (black curve) and s0/L = 0.45
(orange). Bottom panel: s0/L = 0.4 (purple curves) and s0/L = 0.35 (red curves). L = 10H,
lt = 0.2H, and ld = 2H. The thin dashed vertical lines correspond to the bifurcation points.
The results shown here correspond to the equilibrium points of Figure 5.4.

Bifurcation theory explains the stability of the equilibrium solutions which is further con-
firmed by the following frequency analysis. To have a stable fixed point the condition ω2 > 0
must be satisfied. We saw in Section 5.2.3 that for lt � ld, the fixed points located around
the centre of the dip (L/2 − ld/4 < se < L/2 + ld/4) will always be stable. However, when
se < L/2 − ld/4 or se > L/2 + ld/4, the equilibrium points can be stable or unstable. Fig-
ure 5.7 shows ω2 (Equation (5.16)) as a function of ρt/ρ0 for the equilibrium points obtained
in Figure 5.4. In the top panel, as we expected, we see that the frequency squared of the
central solution for s0 = L/2 (black curves) and s0/L = 0.45 (orange curves) is always
positive and it decreases with ρt. In addition, each pair of fixed points of the saddle-node
bifurcation has a positive (stable) branch and a negative (unstable) one. This result agrees
with what we expect from bifurcation theory. Furthermore, for the symmetric case s0 = L/2
(black curves) we obtain that the frequency squared of each bifurcation is the same. For
s0 = L/2 − ld/2 (bottom panel, purple curves) we see that ω2 corresponding to the fixed
point located at the border of the dip inverts the sign at the pitchfork point ρtb/ρ0 = 55
so that the stability changes at this point. As bifurcation theory predicts, we obtain that
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beyond the pitchfork point both emerged solutions have a positive ω2. For the three saddle-
node bifurcations obtained in the bottom panel of Figure 5.4 (one for s0/L = 0.4 and two
for s0/L = 0.35) we obtain again that ω2 > 0 for one branch and ω2 < 0 for the other one.
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Figure 5.8: ω2 as a function of s0 for L = 10H, lt = 0.2H, ld = 2H, and ρt/ρ0 = 250.
The thin dashed vertical lines correspond to the bifurcation points. The results shown here
correspond to the equilibrium points of Figure 5.6.

The result of the calculation of ω2 for the two S-shaped bifurcations of Figure 5.6 is a ribbon-
like diagram, shown in Figure 5.8. The two curves corresponding to the most external fixed
points cross each other at s0 = L/2, meaning that for the symmetric case ω2 is the same for
mirrored solutions. At the four bifurcation points the stable branches (solid curves) join with
the unstable ones (dashed curves) at ω2 = 0. The unstable branches also cross at s0 = L/2
to close the ribbon.

We finish this section with a brief illustration using typical prominence parameters. We
consider a magnetic flux tub of length L = 100 Mm with a dip of length ld = 20 Mm so that
the radius at the midpoint of the structure (Equation (5.9)) is Rd (s = L/2) ≈ −25.5 Mm.
The negative value of the radius means that the curvature of the flux tub at this point is
concave upwards. We take a prominence thread of length lt = 2 Mm and a density contrast
ρt/ρ0 = 100. We consider that the thread is initially placed at the centre of the structure
so that s0 = L/2. Then we consider a coronal sound speed cs0 = 166 km s−1 and a gravity
acceleration g = 0.274 km s−2. Under these conditions and using Equation (5.16), we obtain
that the period of oscillation is P = 2π/ω ≈ 25.9 min. For larger flux tubes and heavier
threads, e.g. L = 200 Mm and ρt/ρ0 = 250, but keeping the rest of variables unchanged
so that Rd (s = L/2) ≈ −57.3 Mm, the oscillatory period is P ≈ 43.2min. According to
the study of Luna et al. (2018), the period for longitudinal oscillations ranges from 30 min
to 110 min, with a strong peak centred at 58 min, so that the theoretical periods obtained
by our model underestimate the observed periods although they are of the same order of
magnitude.

5.3.2 Case lt � ld.

To study the transition between a magnetic configuration without dips and another one with
dips we simply consider an initial configuration where lt � ld and then we increase ld.
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Figure 5.9: Top panel: bifurcation diagram of se/L as a function of ld/L for L = 10H,
ρt/ρ0 = 250, and lt = 0.5H. Middle panel: se/L as a function of lt/L for L = 10H,
ρt/ρ0 = 250, and ld = 0.5H. Bottom panel: se/L as a function of ρt/ρ0 for L = 10H,
lt = 1.5H, and ld = H. In the three panels s0/L = 0.5. The thin dashed vertical lines
correspond to the bifurcation points.

We focus on the case s0 = L/2 so that we will have left-right symmetry. The top panel
of Figure 5.9 shows the bifurcation diagram of se as a function of ld. We vary ld from
0.1H to ldmax (see Equation (5.11)), being lt = 0.5H, L = 10H, and ρt/ρ0 = 250. For
L = H, ldmax = 5.9H. For ld = 0.1H, the bifurcation system develops five equilibrium
points: one around each loop foot (solid curves), one at the centre of the structure (solid
curve) and two solutions that tend to se = L/2 (dashed curves). As in Section 5.3, the
dotted thin lines represent the borders of the dip. When the length of the dip increases,
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the fixed point se = L/2 remains constant at the bottom of the dip. The solutions around
the feet do not change much. However, the other two equilibrium points move away from
the centre as ld increases, always staying outside of the dip. When the bifurcation point
ldb = 5.8H is reached, the two branches of each pair of external solutions merge, destroying
the fixed points. The diagram qualitatively describes two inverted saddle-node bifurcations
plus a central fixed point valid for all values of ld. From bifurcation theory we know that
one branch of the saddle-node is stable (the most external one) and that the second one
is unstable. However, while the stability of the central fixed point for lt � ld was clearly
stable, now the stability of se = L/2 needs a detailed analysis.

In general, the top panel of Figure 5.9 describes a modified subcritical pitchfork bifurcation
(see Figure 3.4.7 of Strogatz 2018). This type of bifurcation is characterised by a locally stable
central fixed point for values beyond a first bifurcation point (three-branches bifurcation)
plus two forward-bending branches of unstable fixed points that bifurcate from the midpoint
at the bifurcation point. The unstable branches reverse and become stable at a second
saddle-node bifurcation point. From bifurcation theory we would obtain that the central
solution is stable for all values of ld. However, due to the characteristics of our model, from
the frequency analysis we will see that below ld = 0.5H, i.e., when ld < lt, the system
develops ‘critical’ points that change the stability of the system. These critical points are
obtained by the same method used for bifurcation points, but now at these points the system
does not bifurcate and does not create new fixed points. One of these critical points is plotted
as a thin dashed vertical line in the top panel of Figure 5.9 (ldc = 0.45H). We call this fixed
point a ‘fitful’ point and it is displayed in the bifurcation diagram as a dot-dashed curve.
Middle and bottom panels of Figure 5.9 show the bifurcation diagram of se as a function of lt
and ρt, respectively, for values of the thread length longer than the dip length. The diagrams
are visually equivalent to that in the top panel of Figure 5.4 for s0 = L/2. However, when
we analyse the frequency squared, we again obtain that the central fixed point is a fitful
point.

Now, we analyse ω2 as a function of ld for the equilibrium points shown in the top panel
of Figure 5.9 by solving Equation (5.16). The top panel of Figure 5.10 shows that the two
branches of the saddle-node bifurcations merge at ω2 = 0 for ldb = 5.8H. As we expected
from bifurcation theory, one branch is negative and the other one is positive. For the central
solution se = L/2, we obtain that for large values of ld (ld > lt), ω

2 > 0 so that the fixed
point is stable. Up to this point there is no contradiction between the frequency analysis
and bifurcation theory. However, when ld < lt, we obtain that ω2 oscillates around zero. For
the parameters we are using, ω2 only takes negative values for one range of values, namely
from ldb = 0.28H to ldb = 0.45H (see left thin dashed vertical line); however, if for example
we increase the value of ρt (not shown here) more than one zero-cross is found. The result
is called the fitful fixed point and it is a consequence of using the average gravity. As we

explained in Section 5.2.1, the term sin
(
π lt
ld

)
in Equation (5.13) may invert periodically the

sign of ḡ′‖(s) that, in turn, changes the stability of the structure. The oscillatory pattern

in the stability of se = L/2 is also shown in the middle panel of Figure 5.10, where ω2 is
presented as a function of lt. Now the fitful point has more than one unstable region when
lt > ld.
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Figure 5.10: ω2 corresponding to the fixed points of Figure 5.9.

Finally, when we fix ld = 1H and lt = 1.5H, the term sin
(
π lt
ld

)
is constant so that ḡ′‖(s)

loses the periodic feature. In this way, when we vary ρt (bottom panel of Figure 5.10), the
fitfully nature of the fixed point se = L/2 disappears and only one change in the stability
for ρtc/ρ0 = 43 occurs. While ρt < ρtc, the fixed point se = L/2 is stable, but as the thread
becomes heavier, the equilibrium point changes to being unstable. This finding is important
because we have found that a heavy plasma thread located in a short magnetic dip can be
unstable and this result is a direct consequence of using the average gravity.

5.4 Equilibrium and frequency analysis for a

non-symmetric dip

All previous figures correspond to a magnetic dip located at the centre of the structure.
However, we can shift the bottom of the dip imposing that g‖(s = sB) = 0, being sB its
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position. In order to do this, we have to define four different regions of g‖(s) instead of
the three utilised in Equation (5.1) by imposing continuity in its derivative. The external
regions are the same as those when the dip is centred. The two dip regions are defined by
two sine functions separated at sB, that ranges between s = L/2 ∓ ld/2. When we move
sB towards left, the right circular segment rises so that we have to impose a vertical leg of
length h = y(L) that joins the loop with the chromosphere. In this way, g‖(s) is given by

g‖(s) =



−g cos
(
π s
L−ld

)
0 < s < s1,

g sb
2 (L−ld)

sin
(

2π
sb

(s− s1 + sb)
)

s1 < s < s1 + sb
2
,

−g 2 ld−sb
2 (L−ld)

sin

(
2π(s−s1−2 ld+

sb
2 )

2 ld−sb

)
s1 + sb

2
< s < s1 + ld,

g sin
(
π s−s1−ld

L−ld

)
s1 + ld < s < L,

g L < s < L+ h,

(5.18)

being sB = s1 + sb
2

. A sketch of the non-symmetric model is plotted in bottom panel of
Figure 5.1.
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Figure 5.11: se as a function of ρt for L = 10H, ld = 2H, lt = 0.2H, and sB = 4.25H.
s0/L = 0.6 (black curves top panel), s0/L = 0.55 (orange curves top panel), s0/L = sB/L
(purple curves bottom panel), and s0/L = 0.35 (red curves bottom panel).

Now when the equation of the equilibrium points, Equation (5.14), is solved, we have to take
into account that the total length of the tube is L+ h. We focus on the case ld � lt and we
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only study the dependence of the system on the density of the thread. Figure 5.11 shows
se as a function of ρt for different values of s0 when L = 10H, ld = 2H, lt = 0.2H, and
sB = 4.25H. For this set of parameters, we obtain that h ≈ 0.24H. First of all, we set s0 at
the right border of the dip (top panel, black curves). As in the bottom panel of Figure 5.4,
when we initially place the thread at some border of the dip, the system develops a pitchfork
bifurcation plus a saddle-node bifurcation. However, since we have changed the position
of the bottom of the dip, the inner branch of the pitchfork bifurcation tends to se = sB
when ρt increases instead of se = L/2 as in the symmetric case. Since we initially place the
thread at the right of the tube, and the bottom of dip is located at the left side of the dip,
the central fixed point has to cross through L/2, meaning that now the asymptote is not
placed at the centre of the structure but at sB. When we move the initial thread position
towards the dip, at s0/L = 0.55 (see orange curves top panel), the pitchfork bifurcation
disconnects into two parts, one saddle-node bifurcation plus a fully stable fixed point valid
for all values of ρt. The central solitary branch also tends to sB with increasing ρt. The
bottom panel purple curves show the bifurcation diagram for an initial position of the thread
located at the bottom of the dip. As in the top panel of Figure 5.4 we have that the central
fixed point remains located at its original position, but now, since we lost symmetry, the
two saddle-node bifurcations have a different bifurcation point. Finally, we set s0/L = 0.35.
The system develops two saddle-node bifurcations plus a fixed point at the left side of the
tube that exists for all values of ρt. The greatest difference between the symmetric and the
non-symmetric dip for s0/L = 0.35 is that the saddle-node bifurcation located inside the dip
is tighter because it is close to the two asymptotes.

An important aspect of the new structure is the role played by the vertical leg. We obtained
that the vertical leg we inserted in the structure of the non-symmetric dip hardly contributes
to the behaviour of the system. Basically, it slightly modifies the position of the bifurcation
points and disrupts the curve of the fixed point closest to the right foot. Finally, we have to
mention that the frequency analysis (not shown here) shows the same behaviour as the one
in Section 5.3.1.
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5.5 Conclusions and discussion

Solar prominences are composed of collections of individual cold plasma threads embedded
in magnetic flux tubes that support the heavy material against the gravity force which
pulls the structure downwards. In principle, to counteract the gravity force, the plasma
must be placed within concave upwards regions called magnetic dips. However, by means
of numerical simulations we found that magnetic structures with dips do not guarantee the
stability of prominences. Specifically, in Chaper 3 we found that the model of prominence
developed by Hood & Anzer (1990) cannot support the dense plasma when it is longitudinally
perturbed and that the magnetic shear does not stabilise the structure. On the contrary, we
do not find this instability linked to lateral displacements in plasma structures embedded
in an isothermal stratified atmosphere permeated by unsheared dipped magnetic arcades
(Terradas et al. 2013; Luna et al. 2016b; Adrover-González & Terradas 2020) or by sheared
magnetic flux ropes (Zhou et al. 2018; Liakh et al. 2020). In the present chapter we have
tried to clarify whether prominence threads can be stable at regions without magnetic dips.
We solved the most elementary hydrostatic equations which include the gas pressure force
together with the gravity force to obtain an expression for the equilibrium points and their
frequency in a simple circular model of a thread in a magnetic dip. We have not included
thermal processes or ionisation effects in the equations.

First, we considered a magnetic structure with a well formed dip filled by a short thread
initially placed at the midpoint of the structure. We found that the flux tube can develop five
equilibrium points. One of the fixed points is located inside the dip and it exists for the whole
range of parameters. For this central fixed point or equilibrium point the thread is stable
and can oscillate under the presence of perturbations. We obtained an analytical expression,
Equation (5.17), that provides its frequency. This result coincides with the finding of Luna
et al. (2012a). They proposed that the two terms of Equation (5.17) contribute to oscillations
by different mechanisms. The term

ω2
s =

4 c2s0
lt (L− lt) ρt/ρ0

, (5.19)

is the pressure-driven slow oscillation frequency, and

ω2
g =

g

|RL|
, (5.20)

is the gravity-driven frequency. Equation (5.20) is the frequency of the pendulum model
(see Equation (1.2)). Luna et al. (2012a) suggested that for a large curvature radius, which
occurs in large flux tubes with short dips (Equation (5.9)), the primary contribution to the
restoring forces is the pressure gradient, while for a small radius it is mainly the solar gravity
force. From the physical point of view, the concave upwards shape of the magnetic field leads
to a magnetic tension force that counteracts the gravity force.

Apart from the trivial solution hosted by the dip, the system can develop four more equi-
librium points at the lateral edges of the tube. When we have symmetry regarding the
midpoint the existing fixed points are also symmetric and we can group them by pairs. Only
one solution of each pair (those located at lower heights) is stable. Now, the force that
can support the dense plasma against the gravity is the pressure gradient. We obtained
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that along the flux tube three qualitatively different stable equilibrium points can coexist,
meaning that the trivial one is stable to small perturbations but not to large ones. In this
sense, the dip holds up locally stable threads but not globally stable ones. The result of
having multiple static thread structures has been studied by other authors. Terradas et al.
(2021, in preparation) studied the equilibrium of a one-dimensional model of thread sub-
ject to hydrostatic and thermal balance. They found, under some selection of parameters,
the existence of a secondary thread-like structure not necessarily located at the dips of the
magnetic fields. In addition, An et al. (1988) and Wu et al. (1990) studied the formation of
solar prominences by mass injection in a Kippenhahn-Schlüter model of prominence. While
An et al. (1988) considered ideal MHD equations, Wu et al. (1990) introduced radiation
and thermal conduction. In their studies the initial magnetic field does not have dips but
when the plasma is injected the system is able to develop central dips. For strong fields, the
plasma hardly bends the lines so that the plasma falls down and accumulates at both legs
of the arcade as well as at the apex, forming a loop-like prominence. On the other hand,
when the dip is well formed plasma is suspended there. It is also shown that the formation
process by mass injection is sensitive to the amount of density and flux velocity. In Wu et al.
(1990), when they increase the amount of mass or the injection velocity, plasma condenses
before it reaches the apex so that it accumulates at both legs of the loop structure. Since
the prominence formation is a dynamic process in a way that the density and the dimensions
of the cold plasma or the magnetic dip change with time, there are obvious difficulties in
comparing the results of An et al. (1988) and Wu et al. (1990) with our static solutions.
However, under specific conditions, the support of prominence mass does not only occur due
to the magnetic tension of the dip but also due to an increase in the pressure gradient.

When the thread is not initially placed at the bottom of the dip, the system still develops
five different fixed points. In summary, the equilibrium points distribute among three stable
solutions and two unstable ones in diverse bifurcation diagrams. The different diagrams have
in common that, when ρt increases, the five fixed points tend asymptotically to the bottom
of the dip se = L/2, to the borders of the dip se = L/2 ± ld/2, and to the limits of the
structure se = lt/2 and se = L− lt/2, respectively. When the structure has a non-symmetric
dip, it has, in essence, a similar behaviour but now the central fixed point tends to se = sB.

A second aim of this chapter was to investigate the gravitational instability for the transition
between a thread embedded in curved magnetic fields without dips and a structure with dips.
We considered threads longer than the length of the dip (lt > ld) and we obtained that the
fixed point located at the bottom of the dip is stable for low densities but becomes unstable
for densities larger than a critical value. This critical point, where the stability changes, does
not behave as a bifurcation point in the sense that no new branches appear or disappear as
it occurs for the saddle-node or the pitchfork bifurcations. On the contrary, for the other
fixed points which are located at the lateral edges of the tube, the bifurcation theory results
remain valid. This critical point is more exceptional when we fix the density but vary the
thread or dip length. Now, the central fixed point develops more than one critical point and
the stability of the thread oscillates between stable and unstable states. We called this fixed
point a fitful point. This finding is a direct consequence of using the average gravity instead
of the projected gravity along the thread. However, the use of ḡ‖(s) is necessary to explain
the transition between an unstable fixed point placed at the apex of a curved magnetic field
without dip and another one with dips.
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In this Thesis we have investigated three-dimensional numerical simulations of oscillations in
solar prominences and gravitational instabilities in threads. The manuscript is divided into
five main chapters, of which the first one contains a general introduction into the physics
of solar prominences, with a special focus on oscillations in prominences. A short overview
about numerical simulations of oscillations in general as well as the description and a first
analysis of the simulations performed in the frame of this Thesis is presented in Chapter 2.
The unexpected numerical results of unstable prominences have led to a theoretical study
of their equilibrium which is conducted in Chapter 3. An investigation of gravitational in-
stabilities in threads is carried out in the Chapters 4 and 5. Initially, the main objective
of this Thesis was to study, by means of 3D MHD simulations, the excitation by external
agents of large amplitude oscillations in prominences, and specifically, to analyse the dy-
namics depending on the impact angle of the passing wave, its energy, the distance from its
origin and the features of the coronal atmosphere, such as the magnetic field or the den-
sity background. Unfortunately, several of these goals had to remain unanswered or could
only be partially solved. Nevertheless, we have advanced regarding the knowledge of other
important questions.

In Chapter 2, oscillations in solar prominences have been numerically analysed with regard
to a wide range of parameters as well as different polarisation of motions. First of all, it is
important to mention that the ideal MHD equations, despite being a simple model, provide a
good approximation that describes many of the dynamical properties of hot, strongly magne-
tised plasma. Our model represents a good approximation of a prominence body that nearly
reproduces the observed oscillations. We have succeeded in inducing oscillations on highly
dense plasma with very steep profiles. We have analysed the periods and damping times
of the oscillations that reflect the physics responsible for driving and attenuating the mo-
tions. We found that the main restoring force of longitudinal oscillations is the field-aligned
component of gravity, following the pendulum model, even though other mechanisms such
as pressure gradients may contribute to the movement too. On the other hand, transverse
oscillations are subject to magnetic forces. The periodicity of the oscillations is sensitive
to the parameters of the system in such a way that each prominence oscillates at its own
frequency. The analysis of the parametric survey in Chapter 2 shows, in agreement with
observational studies, that the oscillation period increases with the prominence width. For
transverse oscillations we obtained that P increases with density and decreases with B. For
longitudinal oscillations we also found that P increases with ρp0, but there are no variations
with B. A sort of novelty, being described in Chapter 2, is the treatment of the attenuation
mechanism for transverse oscillations. The Alfvén continuum modes of the MHD equations
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were computed for different field lines in order to provide a map of the arrangement of the
characteristic period of the system. Our method compares the global oscillatory mode in-
ferred from the time dependent simulations with the accumulated kinetic energy due to the
energy conversion of the resonant absorption process. We found that the resonance surface of
the transverse motions matches in space the location where the kinetic energy increases. The
evidence from this study suggests that the main process of attenuation of transverse oscilla-
tions is resonant absorption. Finally, the insights gained from this chapter might be useful
to determine the polarisation of motion for observed oscillatory events in solar prominences.

In Chapter 3, we have shown that the investigation of 3D numerical simulations of oscil-
lations triggered by external perturbations in highly sheared magnetic fields has not been
completed. The principal limitation of the numerical experiment is the magnetic field model
we utilised. There is evidence that magnetic dips play a crucial role in supporting and con-
fining the dense plasma. Unfortunately, when we impose a strong shear in the magnetic
arcade, the distribution of dips changes. Such behaviour has made it impossible that our
model of prominences remains stable during the oscillations. Oscillations perpendicular to
the magnetic fields trigger flows of dense plasma along the field lines falling to the chromo-
sphere, and the dips in this case do not allow a prominence suspended in the corona. In
addition, the periodic nature of the arcades prevents placing the external disturbance pulses
far from the prominence body. Something similar happens when we use the prominence
model of Hood and Anzer. However, in this chapter we have presented a method capable of
simulating non-linear shock waves strong enough to activate oscillations in filaments. The
pressure, the density and the magnetic variations in the wave are related to the velocity
disturbance through the continuity, the momentum and the induction equations. In terms
of future work, we think that these preliminary results will be helpful in the near future
to perform highly non-linear simulations in solar prominences. It would be an interesting
task to repeat the numerical experiments described in the first part of the Thesis using
magnetic field models capable to hold up the dense plasma. A good candidate for such a
study might be 3D magnetic flux ropes (see Terradas et al. 2016; Zhou et al. 2018). We have
proposed a new methodology for simulating external perturbations that could improve the
knowledge about the dependence of the impact angle on the excitation of different modes in
3D simulations.

In the second part of this Thesis the gravitational instability of solar threads has been in-
vestigated using curved magnetic fields with and without magnetic dips. Based on purely
hydrodynamic equations in one spatial dimension, and applying line-tying conditions at the
footpoints of the magnetic field lines, we derived analytical expressions for the different fea-
sible equilibria and the corresponding frequencies of oscillation. In Chapter 4 we assumed
that the shape of the magnetic field is circular, with no dips. We have found that the system
allows stable and unstable equilibrium solutions subject to the initial position of the thread,
its density contrast and its length, and the total length of the magnetic field lines. Interest-
ingly, the transition between the two types of solutions is produced at specific bifurcation
points that have been determined analytically in some particular cases. When the thread
is initially at the top of the concave magnetic field, i.e., at the apex, we find a supercritical
pitchfork bifurcation, while for a shifted initial thread position with respect to this point
the symmetry is broken, and the system is characterised by an S-shaped bifurcation. These
findings are completely novel results in the field of prominence stability and oscillations.
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The gravitational instability analysis for curved magnetic fields including a magnetic dip has
been presented in Chapter 5. We have investigated structures with symmetric magnetic dips
and others with shifted dips. Now the system allows up to five equilibrium points whose
stability can be explained by bifurcation theory. In Chapter 4 we used the projected gravity
along the magnetic field lines. However, since the thread has a finite length, gravity changes
along it, and under the presence of dips we have found it to be more convenient to use the
average gravity on the thread. The first approximation is valid only for structures with long
dip and short thread lengths. In a well formed prominence, where the cold plasma is hosted
by a large dip, we found that the system develops an equilibrium solution at the bottom
of the dip that is stable for the whole range of parameters. On the other hand, in order
to investigate transitions between one flux tube without dip to another one with dip, we
considered a thread larger than the dip. In this case, the central solution develops critical
points changing the stability of the thread. The nature of the so-called fitful points remains
unclear but they make the existence of unstable equilibria possible, when the dip begins to
form. However, further research regarding this topic needs to be performed in the future.

The study carried out in the second part of this Thesis is elementary in the sense that the
physics we have utilised is quite basic and we have omitted important processes such as
radiation, thermal conduction and heating. This fact makes it difficult to reliably compare
the results obtained in our study with actual prominence observations. Nevertheless, in spite
of the simplifications of our model, we think that the results presented here shed new light
on the behaviour of threads in curved magnetic fields under the presence of gravity and help
to interpret more complex numerical MHD simulations about similar structures. However,
in order to confirm and validate these findings, including numerical simulations in curved
magnetic fields, with and without dips, is an important issue for future research.
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